
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Pricing multi-asset American-style options by memory
reduction Monte Carlo methods

Raymond H. Chan, Chi-Yan Wong *, Kit-Ming Yeung

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

When pricing American-style options on d assets by Monte Carlo methods, one usually stores the simulated asset prices
at all time steps on all paths in order to determine when to exercise the options. If N time steps and M paths are used, then
the storage requirement is d Æ M Æ N. In this paper, we give a simulation method to price multi-asset American-style options,
where the storage requirement only grows like (d + 1)M + N. The only additional computational cost is that we have to
generate each random number twice instead of once. For machines with limited memory, we can now use larger values of
M and N to improve the accuracy in pricing the options.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Memory reduction method; Monte Carlo method; Multi-asset; American-style options; Random number

1. Introduction

Monte Carlo method is one of the main methods for computing American-style options, see for instance
[12,2,3,9]. These algorithms are computationally inefficient because they require the storage of all asset prices
at all simulation times for all simulated paths. Thus the total storage requirement grows like O(dMN) where d

is the number of underlying assets, M is the number of simulated paths and N is the number of time steps. The
accuracy of the simulation is hence severely limited by the storage requirement.

The apparent difficulties in using Monte Carlo methods to price American-style options come from the
backward nature of the early exercise feature. There is no way of knowing whether early exercise is optimal
when a particular asset price is reached at a given time. One can look at this problem from another point of
view. In Monte Carlo method, the simulated paths are all generated in the time-increasing direction, i.e. they
start from the initial asset prices x0 and march to the expiry date according to a given geometric Brownian

0096-3003/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2005.11.108

* Corresponding author.
E-mail addresses: rchan@math.cuhk.edu.hk (R.H. Chan), cywong@math.cuhk.edu.hk (C.-Y. Wong), kmyeung@math.cuhk.edu.hk

(K.-M. Yeung).

Applied Mathematics and Computation 179 (2006) 535–544

www.elsevier.com/locate/amc

Aut
ho

r's

pe
rs

on
al

co

py

motion. But since the pricing of American options is a backward process starting from the expiry date back to
x0, the usual approach is to save all the intermediate asset prices along all the paths.

In this paper, we use our simulation method in [4] for computing multi-asset American-style options that
does not require storing of all the intermediate asset prices. The storage is reduced from O(dMN) to
(d + 1)M + N only. Our main idea is to generate the paths twice: one in a forward sweep to establish the asset
prices at the expiry date, and one in a backward sweep that computes the intermediate asset prices only when
they are needed. The only additional cost in our method is that we have to generate each random number
twice instead of once. The resulting computational cost is less than twice of that of the methods where all
the intermediate asset prices are stored.

The remainder of this paper is organized as follows. Section 2 recalls the usual full-storage approach for com-
puting multi-asset American-style options. Section 3 gives some background about random number generators
in computers. In Section 4, we introduce our memory reduction method. In Section 5, we show how to use our
method to compute multi-asset American options by adopting it to the least-squares method proposed by Long-
staff and Schwartz [9]. Section 6 gives some numerical results to illustrate the effectiveness of our method.

We will use the MATLAB language [11] to explain how the codes are to be written as the language is easier to
comprehend. The corresponding commands in FORTRAN 90 [5] and MATHEMATICA [13] are given in Appendix A.

2. The full-storage method

As usual, we let the prices of d non-dividend paying assets x = (x1,x2, . . . ,xd)T follow the geometric Brown-
ian motion

dxk

xk
¼ r dt þ rk dW k; 1 6 k 6 d;

where r is the risk-free interest rate, rk is the volatility of asset k, and dWk is the Wiener process for asset k. By
Ito’s Lemma, we have

xkðt þ dtÞ ¼ xkðtÞ exp r � 1

2
r2

k

� �
dt þ

Xd

j¼1

vkj dW k

 !

¼ xkðtÞ exp r � 1

2
r2

k

� �
dt þ

ffiffiffiffiffi
dt
p Xd

l¼1

Vðk; lÞzðlÞ
 !

; ð1Þ

where xk(t) is the price of asset k at time t, z is a d-vector of standard normal random variables, and V ¼ ½vij� is
the volatility matrix. The volatility matrix V is given by

C ¼VVT;

and C ¼ ½cij� is the d-by-d covariance matrix with cij = qijrirj, where qij is the correlation coefficient between
dWi and dWj, see for instance [8].

In the Monte Carlo simulation, we divide the time horizon into N time steps with each having the length

Dt ¼ T � t0

N
;

where t0 is the current time and T is the expiry date of the option. Thus the time horizon is discretized as
t0 < t1 < � � � < tN = T where tj = t0 + jDt.

Let the asset prices at time t0 be x0 ¼ ðx1
0; x

2
0; . . . ; xd

0Þ
T. Given x0, we can simulate the price paths using (1).

More precisely, for asset k, 1 6 k 6 d, if we are to simulate M paths, then the ith path can be defined by the
recurrence:

Si
jðkÞ ¼ Si

j�1ðkÞ exp r � r2
k

2

� �
Dt þ

ffiffiffiffiffi
Dt
p Xd

l¼1

Vðk; lÞzi
jðlÞ

 !
; 1 6 i 6 M ; 1 6 j 6 N ; ð2Þ

536 R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544

Aut
ho

r's

pe
rs

on
al

co

py

where Si
j is the asset price vector, and its kth entry Si

jðkÞ; 1 6 k 6 d, is the price of asset k on the ith path at
time tj with Si

0ðkÞ ¼ xk
0 for all i, and zi

j is a vector of d independent, identically distributed, standard normal
random numbers. For simplicity, we denote S0 = x0.

The straightforward approach, like those in [12,3,9], is to simulate the paths and then store all intermediate
asset price vectors Si

j up for later computation of the option prices. We will refer this approach as the full-stor-

age method. It requires d Æ M Æ N storage. Notice that to generate the paths, we need d Æ M Æ N standard normal
random numbers.

3. The random number generator

According to (2), we need to generate one standard normal random number for each asset at each time step
on each path. Most computer languages already have built-in functions to generate these random numbers. In
MATLAB, it is ‘‘randn’’. By using the concept of a seed, one has the flexibility to change or fix the sequence of
random numbers each time they are generated. For example, the MATLAB commands

randn(0seed0,s);
e = randn;

give a different random number e each time the seed s is changed, but give the same random number if s is
fixed.

In MATLAB, one can even extract the seed that generates the next random number in a sequence. The com-
mand is

s = randn(0seed0);

More precisely, if the sequence corresponding to the seed s is

set seed s !randn e1 !
randn

e2 !
randn � � � !randn el�1 !

randn
el !

randn � � � ð3Þ

then we can obtain a partial sequence felg1l¼k starting from ek, provided that we have extracted the seed c after
generating ek�1, i.e.

set seed s !randn e1 !
randn

e2 !
randn � � � !randn ek�2 !

randn
ek�1 !randnð0seed0Þ

c

set seed c !randn ek !
randn

ekþ1 !
randn � � � !randn el�1 !

randn
el !

randn � � �
ð4Þ

In view of this, we will call an integer c the current seed of a random number ek, if setting the seed to c, the
next random number so generated is ek.

4. The forward-path method

In this section, we apply our method which does not need to store the intermediate asset price vectors fSi
jg

when computing the multi-asset option prices. In this method, each vector of random numbers fzi
jg is gener-

ated twice, but the intermediate asset price vectors Si
j are generated only once as in the full-storage method.

From (2), the intermediate asset price vectors are given by

Si
j ¼ S0 � exp j r � r � r

2

� �
Dt þ

ffiffiffiffiffi
Dt
p

Vðzi
1 þ zi

2 þ � � � þ zi
jÞ

� �
; 1 6 i 6 M ; 1 6 j 6 N ; ð5Þ

where Æ is the Hadamard product, and r Æ r = ((r1)2, (r2)2, . . . , (rd)2)T.
In the forward-path method, we generate the vectors of random numbers zi

j in the following manner. Given
an arbitrary seed s(1):

R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544 537

Aut
ho

r's

pe
rs

on
al

co

py

set seed sð1Þ ! z1
1 ! z2

1 ! � � � ! zM
1 ð! get seed sð2ÞÞ

! z1
2 ! z2

2 ! � � � ! zM
2 ð! get seed sð3ÞÞ

! � � �
! z1

N�1 ! z2
N�1 ! � � � ! zM

N�1 ð! get seed sðNÞÞ
! z1

N ! z2
N ! � � � ! zM

N .

ð6Þ

More precisely, we generate the d-vector of random numbers zi
j on every path i, 1 6 i 6M, for the time step

j = 1 first. Then we generate them on all paths for j = 2 etc. At the last path (path M) for each time step (i.e.
after generating dM random numbers), we get and save the current seed s(j) for later use. One important point
to note here is that we do not need to store any of the random number zi

jðkÞ so generated. In fact, according to
(5), in order to compute Si

N , we only need the sum
PN

j¼1zi
j. We assign a d-by-M matrix U to hold this. Thus

once zi
j is generated, we add it to the ith column Uð:,iÞ of U:

Uð:,iÞ ¼ Uð:,iÞ þ zi
jð:Þ; 1 6 i 6 M ; ð7Þ

and zi
j can then be discarded. When all the random numbers are generated, we compute Si

N on all paths by
(5):

Si
N ¼ S0 � exp N r � r � r

2

� �
Dt þ

ffiffiffiffiffi
Dt
p

VUð:,iÞ
� �

; 1 6 i 6 M . ð8Þ

When computing the option price, we have to move backward in time. This can be done by rewriting (2)
as

Si
j�1ðkÞ ¼ Si

jðkÞ exp � r � r2
k

2

� �
Dt �

ffiffiffiffiffi
Dt
p Xd

l¼1

Vðk; lÞzi
jðlÞ

 !
; ð9Þ

1 6 i 6M, 1 6 j 6 N, 1 6 k 6 d. Thus given fSi
jg

M
i¼1, to obtain fSi

j�1g
M
i¼1, we only need the vectors of random

numbers fzi
jg

M
i¼1. In view of (6), we can generate them by using the seed s(j), i.e.

set seed sðjÞ ! z1
j ! z2

j ! � � � ! zM
j . ð10Þ

Repeating the idea, we can generate the asset price vectors fSi
jg

M
i¼1 for all time steps j in the backward manner,

and at each time step, we only need the storage for storing fSi
jg

M
i¼1 for that time step.

We note that the whole forward-path approach requires only an N-vector s and a d-by-M matrix U. The
current asset price vectors fSi

jg
M
i¼1 at any time step j can be stored using the storage for the matrix U (which is

not needed once Si
N is computed). Regarding the computational cost, we note that the cost of (9) is the same as

that of (2). Hence in the forward-path method, the only additional costs as compared to the full-storage
method are

(i) the generation of the current seeds s(j) in the forward sweep (6),
(ii) the generation of the random numbers in the backward sweep (10), and

(iii) the summation of these vectors of random numbers in (7).

More precisely, the additional cost will be N calls of randn(0seed0) and randn(0seed0,s), dMN calls
of randn, and dMN additions. We will see in the numerical example in Section 6 that the total cost is less
than twice of that of the full-storage method. We emphasize that all results obtained by the forward-path
method and full-storage method are exactly the same, since we are using the same paths to price the
option.

We end this section by pointing out that our forward-path method can be applied to more general pseudo-
random number generators. More precisely, if the generator has the properties (3) (i.e. a unique sequence is
generated for a fixed seed), and (4) to extract the current seeds in any random number sequence it generates,
then we can apply the forward-path method.

538 R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544

Aut
ho

r's

pe
rs

on
al

co

py

5. The least-squares method

Our path generating technique can reduce the memory requirement of Monte Carlo methods for pricing
multi-asset American-style options. In this section, we illustrate this by pricing an American put option on
the maximum of multi-assets using the least-squares approach developed by Longstaff and Schwartz [9].

At the final exercise date, the optimal exercise strategy for an American option is to exercise the option if it
is in the money. Prior to the final date, however, the optimal strategy is to compare the immediate exercise
value with the expected cash flow from continuing, and then exercise if immediate exercise is more valuable.
Thus the key to optimally exercising an American option is to identify the conditional expected payoff from
continuation. In [9], the cross-sectional information in the simulated paths is used to identify the conditional
expectation function. This is done by regressing the payoffs from continuation on a set of basis functions
depending on the state variables at each time step. The fitted function from this regression is an efficient unbi-
ased estimate of the conditional expectation function, and by which, one can estimate an optimal stopping rule
for the option.

According to the stopping rule, the cash flows generated by the option at each exercise time are identified.
The option price is then calculated by discounting all these cash flows back to time t0 at the risk-free rate r.
Since only the paths for which the option is in the money are included in the regression, the method signifi-
cantly reduces the computational time. However, as in other Monte Carlo methods for computing American
options, the method saves all the intermediate asset prices for the computation of the option price. It therefore
requires a storage of size dMN, where d is the number of underlying assets, M is the number of stimulated
paths, and N is the number of time steps. Here we apply our method in Section 4 to reduce the storage require-
ment to (d + 1)M + N.

We illustrate our method with a numerical example. Consider an American put option on the maximum of
three non-dividend paying assets (i.e. d = 3) with strike price E equals to $45. The current prices of the three
assets S0 are ($40, $40,$40)T, the risk-free rate r is 0.05, the volatilities of the assets r are 0.2, 0.3 and 0.5,
respectively, and the time to maturity T is 7 months. Their correlation coefficients are all equal to 0.5. We
assume that the option is exercisable at time j = 0,1,2,3,4 and 5 (i.e. N = 5). We illustrate the algorithm
by using 20 simulated paths, i.e. M = 20.

Algorithm

1. Initialization:
(a) Set the seed to s(1) which is chosen arbitrarily. Using (6)–(8) get and save the current seed fsðjÞg5

j¼2, and
for each path i, compute Si

5 and save it in Uð:,iÞ.
(b) For each path i, compute the present value of the payoff at the expiry date T, (i.e.

e�5r Dt maxfE �max16k63fSi
5ðkÞg; 0g), and save them in a vector p. The value is the cash flow realized

by the option holder conditional on not exercising the option before the expiry date j = 5.

Path i Si
5ð1Þ Si

5ð2Þ Si
5ð3Þ pðiÞ ¼ e�5r Dt maxfE �max16k63Si

5ðkÞ; 0g
1 44.392 35.403 36.127 0.590
2 40.421 36.054 42.817 2.121
3 42.083 54.663 33.340 0.000
4 44.327 53.906 40.571 0.000
5 48.002 36.657 36.067 0.000
6 42.348 57.317 41.173 0.000
7 44.265 51.509 61.581 0.000
8 30.598 30.325 48.162 0.000
..
. ..

. ..
. ..

. ..
.

19 43.555 36.844 55.607 0.000
20 40.086 43.058 55.567 0.000

R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544 539

Aut
ho

r's

pe
rs

on
al

co

py

2. Backward time-marching to j = 4:
(a) With the saved seed s(5), generate the random numbers fzi

5g
M
i¼1 again by (10). Then compute Si

4 for all
paths by (9) and store them in Uð:,iÞ, i.e. the memory location of Si

5 will be overwritten by Si
4.

(b) Decide if the path is in the money, i.e. if max16k63Si
4ðkÞ < E.

Path i p(i) Si
4ð1Þ Si

4ð2Þ Si
4ð3Þ In the money?

1 0.590 46.111 44.486 43.397
2 2.121 40.403 38.493 50.854
3 0.000 43.223 40.234 36.557 YES
4 0.000 49.026 56.502 43.556
5 0.000 45.488 32.801 33.771
6 0.000 39.441 53.467 34.646
7 0.000 38.725 45.518 48.849
8 0.000 28.830 32.181 42.138 YES
..
. ..

. ..
. ..

. ..
. ..

.

19 0.000 41.122 38.945 56.107
20 0.000 39.870 45.827 57.358

(c) For those paths that are in the money, we use the least-squares approach in [9] to estimate the expected
payoff from continuing to hold the option conditional on Si

4. More precisely, regress p(i) on the set of
basis functions 1, Si

4ð1Þ, Si
4ð2Þ, Si

4ð3Þ, ðS
i
4ð1ÞÞ

2, ðSi
4ð2ÞÞ

2 and ðSi
4ð3ÞÞ

2 for i = 3, 8, 10, 12, 13, 15, 16, 17.
The resulting conditional expected payoff function is

E½pjSi
4� ¼ 3:797þ0:203Si

4ð1Þ�0:183Si
4ð2Þ�0:133Si

4ð3Þ�2:545ðSi
4ð1ÞÞ

2�9:484ðSi
4ð2ÞÞ

2�4:417ðSi
4ð3ÞÞ

2.

ð11Þ
The seven coefficients in (11) are obtained by solving the least-squares problem:

1 S3
4ð1Þ S3

4ð2Þ S3
4ð3Þ � � � ðS3

4ð3ÞÞ
2

..

. ..
.

1 Si
4ð1Þ Si

4ð2Þ Si
4ð3Þ � � � ðSi

4ð3ÞÞ
2

. .
.

..

. ..
.

1 S17
4 ð1Þ S17

4 ð2Þ � � � ðS17
4 ð2ÞÞ

2 ðS17
4 ð3ÞÞ

2

266666666666664

377777777777775

c1

c2

c3

c4

c5

c6

c7

266666666666664

377777777777775
¼

pð3Þ

..

.

pðiÞ

..

.

pð17Þ

26666666664

37777777775
. ð12Þ

Here only the paths for which the option is in the money are included, i.e. i = 3, 8, 10, 12, 13, 15, 16, 17.
(d) For the paths that are in the money, substitute their Si

4 into the right-hand side of (11) to obtain the
conditional expected payoffs for continuing to hold the option. Then compare them with the present
value of immediate exercising to see if we should exercise (see the table below). For those paths where
we should exercise (i.e. i = 3, 10, 13, 15, 17), we update the payoff vector p(i) by the exercising value, i.e.

pðiÞ ¼

e�4r Dt max E � max
16k63

Si
4ðkÞ; 0

� �
;

if e�4r Dt max E � max
16k63

Si
4ðkÞ; 0

� �
> E½pjSi

4�;

unchanged;

if otherwise.

8>>>>>>>>><>>>>>>>>>:

540 R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544

Aut
ho

r's

pe
rs

on
al

co

py

Path i Continuation
E½pjSi

4�
Exercising
e�4r Dt maxfE �max16k63Si

4ðkÞ; 0g
Should we exercise? Updated p(i)

3 �0.162 1.736 YES 1.736
8 3.040 2.796 Unchanged

10 7.658 10.029 YES 10.029
12 9.250 3.118 Unchanged
13 4.548 5.474 YES 5.474
15 8.432 9.315 YES 9.315
16 7.110 3.809 Unchanged
17 3.041 4.887 YES 4.887

(e) Go back to Step 2(a) and backward time-marching to j = 3 etc.

In essence, given Si
jþ1 and p, the algorithm first computes Si

j using (10) and (9). Then it finds E½pjSi
j� by solv-

ing the least-squares problem (12) for those paths that are in the money. Using E½pjSi
j�, it computes the con-

ditional expected payoffs for all paths that are in the money, and then compare them with the present value of
immediate exercising. Finally, it updates the corresponding entries of the payoff vector p in case we should
exercise.

To complete the example, we backward time-march to j = 1 and get

p ¼ ½0:590; 8:207; 1:736; 4:951; 0:000; 3:323; 5:068; 10:716; 1:509; . . . ; 4:887; 0:000; 5:064; 0:000�T.

The option can now be valued by averaging all the entries of p at time j = 1. For this example, it will be $4.161.
Then compare it with the value of immediate exercising to see if we should exercise at time j = 0. Thus, we get
the option price equals to $5.000.

From the example, we see that for the forward-path method, we only need to store U, p, and s. We sum-
marize the memory requirement in Table 1. For completeness, we also list in the table the additional cost
required by our method as compared to the full-storage method. From the algorithm, we notice that the addi-
tional costs are precisely the costs of generating the random numbers in the backward sweep, and these costs
are already given at the end of Section 4.

6. Numerical examples

In this section, we test our method on an example given in [1, p. 400]. It is an American put option on the
maximum of three assets (i.e. d = 3) with strike price E. The current prices of the three assets S0 are
($40, $40,$40)T, the riskless rate r is 0.05, the volatilities of the assets r are 0.2, 0.3 and 0.5 respectively,
and the expiry date is T months. Their correlation coefficients are given by q. We emphasize that the results
obtained by the full-storage method and the forward-path method are exactly the same, since we are using the
same paths to price the option. In our experiment, all our computations were done by FORTRAN 90 on a SGI
Origin 3200 machine with 16 Gigabyte RAM and only one processor is used. Again we use M and N to denote
the number of paths and the number of time steps respectively.

Table 1
Memory and cost comparison

Method Memory Additional computational cost

Full-storage dMN + M + O(1) –

Forward-path (d + 1)M + N + O(1) N calls to get s in (6)
dMN additions to find U in (7)
N calls to set s in (10)
dMN calls to generate fzi

jg in (10)

R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544 541

Aut
ho

r's

pe
rs

on
al

co

py

We remark that the least-square problem (12) is usually ill-conditioned especially when fSi
jðkÞg are large.

We remedied that by choosing the basis 1; eSi

jð1Þ; eSi

jð2Þ; eS i

jð3Þ; 1

1þeS i
j ð1Þ
; 1

1þeS i
j ð2Þ
; 1

1þeS i
j ð3Þ

� �
instead of

1;Si
jð1Þ;S

i
jð2Þ;S

i
jð3Þ; ðS

i
jð1ÞÞ

2
; ðSi

jð2ÞÞ
2
; ðSi

jð3ÞÞ
2

n o
when doing the regression in (11), where

eSi
jðkÞ ¼ Si

jðkÞ �
Pd

k¼1S0ðkÞe
j r�

r2
k
2

� �
Dt

d
.

The least-squares problem is then solved by using the Givens QR method [7, p. 226].
Tables 2 and 3 show the effect on the errors by increasing M from 1000 to 100,000 while N is fixed. In the

tables, the data under the column ‘‘PPDE’’ are results computed by the classical integration method and are
given in [1, p. 400]. The results under the ‘‘Mean’’ and ‘‘STD’’ are the means and standard deviations obtained
after 10 trials. The final column ‘‘Error’’ is the difference between ‘‘PPDE’’ and the ‘‘Mean’’. From the tables,
we see that the error decreases by one decimal point when M is increased 100 times. This is consistent with the
error estimate Oð1=

ffiffiffiffiffi
M
p
Þ of the Monte Carlo method [6].

Table 4 gives the CPU time for one run of the methods when E = 40 and q = 0.5. The symbol ‘‘�’’ signifies
that memory is not enough to run the problem of that size. From the table, we observe that the time increases
roughly like linear with respect to M and N. Moreover, as expected, the time required by our memory reduc-
tion method is always less than twice of that of the full-storage method.

Table 2
Forward-path method with M = 103 and N = 10

q (%) T E PPDE Mean STD Error

0 1 35 0.00 0.000 0.000 0.000
40 0.23 0.232 0.021 0.002
45 5.00 5.000 0.000 0.000

0 4 35 0.01 0.011 0.003 0.001
40 0.44 0.448 0.040 0.008
45 5.00 5.000 0.000 0.000

0 7 35 0.04 0.049 0.012 0.009
40 0.57 0.582 0.053 0.012
45 5.00 5.000 0.000 0.000

50 1 35 0.00 0.003 0.001 0.003
40 0.48 0.479 0.037 �0.001
45 5.00 5.000 0.000 0.000

50 4 35 0.09 0.101 0.020 0.011
40 0.93 0.919 0.066 �0.011
45 5.00 5.000 0.000 0.000

50 7 35 0.20 0.234 0.033 0.034
40 1.19 1.173 0.088 �0.017
45 5.00 5.000 0.000 0.000

100 1 35 0.01 0.006 0.003 �0.004
40 0.84 0.875 0.053 0.035
45 5.00 5.000 0.000 0.000

100 4 35 0.19 0.211 0.032 0.021
40 1.56 1.607 0.096 0.047
45 5.00 5.040 0.057 0.040

100 7 35 0.42 0.457 0.054 0.037
40 1.96 2.006 0.113 0.046
45 5.20 5.253 0.115 0.053

542 R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544

Aut
ho

r's

pe
rs

on
al

co

py

Acknowledgment

The research was partially supported by the Hong Kong Research Grant Council Grant CUHK4243/01P
and CUHK DAG 2060220.

Appendix A

In FORTRAN 90 [5], the commands to set the seed to s are:

call random_seed(size=k)
seed(1:k)=s

call random_seed(put=seed(1:k))

Table 3
Forward-path method with M = 105 and N = 10

q (%) T E PPDE Mean STD Error

0 1 35 0.00 0.000 0.000 0.000
40 0.23 0.221 0.003 �0.009
45 5.00 5.000 0.000 0.000

0 4 35 0.01 0.013 0.000 0.003
40 0.44 0.431 0.004 �0.009
45 5.00 5.000 0.000 0.000

0 7 35 0.04 0.041 0.000 0.001
40 0.57 0.558 0.005 �0.012
45 5.00 5.000 0.000 0.000

50 1 35 0.00 0.002 0.000 0.002
40 0.48 0.478 0.003 �0.002
45 5.00 5.000 0.000 0.000

50 4 35 0.09 0.087 0.001 �0.003
40 0.93 0.917 0.002 �0.013
45 5.00 5.000 0.000 0.000

50 7 35 0.20 0.205 0.003 0.005
40 1.19 1.175 0.005 �0.015
45 5.00 5.000 0.000 0.000

100 1 35 0.01 0.006 0.000 �0.004
40 0.84 0.848 0.003 0.008
45 5.00 5.000 0.000 0.000

100 4 35 0.19 0.199 0.002 0.009
40 1.56 1.567 0.005 0.007
45 5.00 5.002 0.004 0.002

100 7 35 0.42 0.428 0.003 0.008
40 1.96 1.968 0.004 0.008
45 5.20 5.191 0.006 �0.009

Table 4
CPU time in seconds for different methods

M

105 104 5 · 104 105 5 · 105

N 50 100 150 200 50

Full-storage 7.80 � � � 0.79 3.98 7.85 �
Forward-path 10.34 20.77 30.96 41.32 1.03 5.18 10.36 51.91

R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544 543

Aut
ho

r's

pe
rs

on
al

co

py

where k is the number of 32-bit words used to hold the seed. In our machine, k = 64. The commands to extract
the current seed c are:

call random_seed(get=current(1:k))
c=current(1:k)

We remark that our FORTRAN 90 only provides uniformly distributed random numbers. We have used the
Box–Muller transform [10, p. 73] to produce normal distributed random numbers.

In MATHEMATICA [13], the seeds are set by ‘‘SeedRandom[s]’’. To extract the current seed, use ‘‘c=$Ran-
domState’’. To reset the seed to c, use ‘‘$RandomState=c’’. MATHEMATICA provides uniformly distributed
random numbers with ‘‘Random[]’’. One can again use the Box–Muller transform to produce normal dis-
tributed random numbers.

References

[1] J. Barraquand, D. Martineau, Numerical valuation of high dimensional multivariate American securities, J. Financ. Quant. Anal. 30
(1995) 383–405.

[2] P. Boyle, M. Broadie, P. Glasserman, Monte Carlo methods for security pricing, J. Econom. Dynam. Control 21 (1997) 1267–1321.
[3] M. Broadie, P. Glasserman, Pricing American-style securities using simulation, J. Econom. Dynam. Control 21 (1997) 1323–1352.
[4] R. Chan, C. Wong, K. Yeung, Pricing American-Style Opinions by Monte Carlo Methods without Storing all the Intermediate Asset

Prices, CUHK Math. Dept. Research Report #2002-11.
[5] S. Chapman, Fortran 90/95 for Scientists and Engineers, McGraw-Hill, 1998.
[6] S. Galanti, A. Jung, Low-discrepancy sequences: Monte Carlo simulation of option prices, J. Dervi. 5 (1997) 63–83.
[7] G. Golub, C. Van Loan, Matrix Computations, JHU Press, 1996.
[8] Y. Kwok, Mathematical Models of Financial Derivatives, Springer-Verlag, 1998.
[9] F. Longstaff, E. Schwartz, Valuing American options by simulation: a simple least-squares approach, Rev. Financ. Stud. 14 (2001)

113–147.
[10] S. Ross, A First Course in Probability, fifth ed., Prentice-Hall, 1998.
[11] K. Sigmon, T. Davis, MATLAB Primer, sixth ed., CRC Press, 2002.
[12] J. Tilley, Valuing American options in a path-simulation model, Trans. Soc. Actuaries 45 (1993) 563–577.
[13] S. Wolfram, The Mathematica Book, fourth ed., Cambridge University Press, 1999.

544 R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544

