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Abstract. High-resolution image reconstruction refers to the problem of constructing a high res-
olution image from low resolution images. One approach for the problem is the recent framelet
method in [4]. There the low resolution images are assumed to be small perturbation of a reference
image perturbed in different directions. Video clips are made of many still frames, usually about
30 frames per second. Thus most of the frames can be considered as small perturbations of their
nearby frames. In particular, frames close to a specified reference frame can be considered as small
perturbations of the reference frame. Hence the setting is similar to that in high-resolution image
reconstruction. In this paper, we propose a framelet algorithm similar to that in [4] to enhance the
resolution of any specified reference frames in video clips. Experiments on actual video clips show
that our method can provide information that are not discernable from the given clips.

1. Introduction

High-resolution image reconstruction refers to the problem of constructing a high resolution image
from low resolution images. Its applications include remote sensing, surveillance, and medical
imaging. One of the methods to obtain the low resolution images is to use a sensor array with
many low resolution sensors. In the array, each sensor is perturbed by subpixel displacements so
as to provide enough independent information in the low resolution images to reconstruct the high
resolution image, see [1]. The reconstruction problem can be viewed as a deconvolution problem
where many methods are available. One approach is the recent wavelet algorithms developed in
[3, 4].

In this paper, we will extend the method in [4] to video clips to enhance their resolution. Video
clips are made of many still frames—normally 25 to 30 frames per second. Thus most of the frames
can be considered as small perturbations of their nearby frames (nearby in time when the frames
are captured). More precisely, consider a sequence of frames {fk}Kk=−K in a given video clip, where
k increases with the time when the frame fk is captured. Let f0 be the frame that we want to
enhance its resolution. We will call f0 the reference frame (or the still) and aim to improve its
resolution by incorporating information from other frames in {fk}Kk=−K . For frames that are taken
close to f0 in time, they can be considered as small spatial perturbations of f0. In other words,
they can be considered as images obtained by displacing the sensors in a sensor array, and hence
we have a setting similar to that of the high-resolution image reconstruction in [1]. This allows us
to use the framelet algorithm developed in [4] to improve the resolution of f0 by incorporating the
information in {fk}Kk=−K .
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The model in [1] and the framelet method in [4] both assume that the perturbation of the
sensors are translation only. However, in video clips, there are other motion effects from one frame
to another. Therefore in this paper, we will develop ways to remove them in the frames and to
estimate the translational displacement between frames fk and the reference frame f0. Once the
displacement is determined, we can apply the method in [4]. One important difference between
our method here and that in [4] is that the latter assumes that the low resolution images from
all sensors are available. Here, the situation is more dynamic, and one has no way in knowing
beforehand which sensor a frame fk is corresponding to, and if we have enough frames to match
all sensors. Thus our algorithm here is a dynamic version of that in [4]. For each frame coming
into our algorithm, we will check if it is close enough to f0 to be useful. If it is, then we compute
its displacement and the sensor it is corresponding to. Then we apply the algorithm in [4] to it
to enhance the resolution of f0. This is done frame by frame. Unlike the setting in [1, 4] where a
blurring operator for the problem is explicitly available, here we do not have any explicit blurring
operator.

Our experimental results on two video clips (one filmed by us [5] and another provided to us by
Ji and Fermuller [10]) show that our method can resolve textual details in the stills that are not
discernable from the stills or the video clips themselves. Our method is therefore useful in revealing
hidden information in video clips.

The outline of the paper is as follows. In §2, we give our tight frame algorithm in the 1-
dimensional setting, i.e. for high-resolution signal reconstruction. Then in §3, we extend the
algorithm to 2-dimensional case, i.e. high-resolution image reconstruction. The algorithm is dif-
ferent from that in [4], but will be more suitable in our video clips setting. In §4, we present our
algorithm for enhancing video stills. For this, we need to remove the motion effects other than
translations in the frames. Then we need to estimate the displacement errors between the frames.
In §5, we illustrate the effectiveness of our algorithm by applying it on two video clips. Finally,
conclusions are given in §6.

We first give the notations that we will be using. Bold-face characters indicate vectors, for
instance, g = [· · · , g(−1), g(0), g(1), · · · ]. If f represents an image f(x, y), then f represents the
column vector of f constructed by raster scanning of f row by row. The matrix At denotes the
transpose of A. Symbol Ij denotes the j-by-j identity matrix.

2. High-resolution Signal Reconstruction

To simplify the discussions, we start from the 1D signal reconstruction. The model is the 1D
version of the model given in [1, 4].

2.1. The Model. If we want to get a sampling of a continuous signal f , one conventional way is
to take its integral, i.e.

(2.1) f(n) ≡ 1

T

∫ (n+ 1

2
)T

(n− 1

2
)T

f(x)dx,

where T is the sampling length. Due to the limit of the capturing devices, sometimes we can only
get the discrete signal at coarse sampling resolution, namely, TL, where L is a positive integer. The
high-resolution signal reconstruction refers to the construction of a signal of sampling resolution
T from a set of signals of sampling resolution LT . In this paper, for simplicity we consider only
L = 2. This would imply that the resolution of our signals can only be enhanced by two times.
However, larger value of L can be considered similarly, but with more complicated notations.
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Figure 1. (Left) The domain of integration for gi(n) and (Right) the values of g.

Let the signals of sampling resolution 2T be positioned at nT , n ∈ Z, and the shift between
them is T , i.e.

(2.2) gi(n) =
1

2T

∫ (2(n+ 1

2
)+i)T

(2(n− 1

2
)+i)T

f(x)dx, i = 0, 1, n ∈ Z,

see Figure 1 (Left) to see the domain of integration for gi(n). A straightforward way to form a
signal with sampling resolution T is to interlace the two low resolution signals g0 and g1, i.e.

g(n) = gi(b
n

2
c), (i = n mod 2),

see Figure 1 (Right). The function g is called the observed high resolution signal. In vector forms,
we have g = g0 ⊗ e0 + g1 ⊗ e1 where e0 = (1, 0)t, e1 = (0, 1)t, and ⊗ is the Kronecker product.

Define the sampling matrix Di and the synthetic matrix Ui as

(2.3) Di = IM ⊗ et
i and Ui = IM ⊗ ei, i = 0, 1,

where M is the length of gi (M can be infinite here). Then we also have

(2.4) gi = Dig and g = U0g0 + U1g1.

We note that the matrix Ui synthesizes g from the low-resolution signals gi, whereas Di extracts
gi back from g. Moreover, we have

(2.5) U0D0 + U1D1 = IN , DiUi = IM , and DiUj = 0 if i 6= j.

Here N = 2M is the length of g.
Though g is already a signal of sampling resolution T , and is supposedly better than the low

resolution signals g0 or g1, it is not equal to the desired signal f given in (2.1). There is however
a relationship between f and g that one can prove easily: if f(x) is constant in the intervals
[(n− 1

2)T, (n + 1
2)T ), n ∈ Z, i.e. f(x) = f(n), for x ∈ [(n− 1

2 )T, (n + 1
2)T ), then

g(n) =
1

4
f(n− 1) +

1

2
f(n) +

1

4
f(n + 1), ∀n ∈ Z.

In matrix forms, it is

(2.6) g = Hf ,

where H is a Toeplitz matrix with entries [H]ij = ai−j, where

(2.7) [· · · , 0, a−1, a0, a1, 0, · · · ] = [· · · , 0, 1

4
,
1

2
,
1

4
, 0, · · · ].

To obtain a better signal than g, one will have to solve f from (2.6). It is an ill-posed inverse
problem where many methods are available. One of them is the recent wavelet and framelet
approaches developed in [3, 4].
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2.2. Tight Frame Approach. The problem of high-resolution reconstruction is understood and
analyzed under the framework of multiresolution analysis of L2(R) by recognizing that the filter a

given in (2.7) is a low-pass filter associated with a multi-resolution analysis [4]. More precisely, the
following filters form tight frame filters by applying the unitary extension principle of [14, 4]:

m0 ≡ 1

2
[
1

2
, 1,

1

2
] = a,

m1 ≡
√

2

4
[−1, 0, 1],(2.8)

m2 ≡ 1

2
[−1

2
, 1,−1

2
].

In (2.6), the matrix H is of infinite size. In practice, f = [f0, f1, · · · , fN−1] will be a signal
of finite length N . The corresponding finite matrix H will vary according to which boundary
condition we use. The most popular boundary conditions are the Dirichlet, periodic, symmetric
and the Neumann conditions. In this paper, we use the Neumann boundary condition as it usually
gives better performance [12], and is required in the convergence proof in §2.4.

To derive our algorithm, we need one more notation. The Toeplitz-plus-Hankel matrix for a
sequence b = [b−N , b−N+1, . . . , b0, . . . , bN−1, bN ] is defined by

ToeplitzHankel(b) = [Hankel(b)l + Toeplitz(b) + Hankel(b)r],

where

Hankel(b)l =




b1 · · · bN

... . .
.

bN 0


 , Hankel(b)r =




0 b−N

. .
. ...

b−N · · · b−1


 ,

and

Toeplitz(b) =




b0 b−1 · · · b−N−2 b−N−1

b1 b0 · · · · · · b−N−2
...

...
. . .

...
...

bN−2 · · · · · · b0 b−1

bN−1 bN−2 · · · b1 b0




.

Note that under the Neumann boundary condition, the matrix for a filter b will be the matrix
given by ToeplitzHankel(b), see [12].

Under the Neumann boundary condition, the matrix form of the forward and inverse tight frame

transforms can be represented by the matrices {Tp}2p=0 and
{
T∗

p

}2

p=0
defined by

(2.9) Tp = ToeplitzHankel(ap) and T∗
p = ToeplitzHankel(āp).

Here ap and āp are (2N + 1)-vectors given by:

ap = [0, · · · , 0,mp(−1),mp(0),mp(1), 0, · · · , 0],
āp = [0, · · · , 0,mp(1),mp(0),mp(−1), 0, · · · , 0],

with mp given in (2.8). The perfect reconstruction formula for framlet transform is I =
∑2

i=0 T∗
i Ti.

Since the filter a in (2.7) equals m0, we have H = T0. Therefore, by (2.6), we have

(2.10) f =

2∑

i=0

T∗
i Tif = T∗

0g + T∗
1T1f + T∗

2T2f .
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This is the equation from which we solve for f in the following. Before doing so, we will like to add
to the equation one more complication from the real world.

In actual applications, especially when enhancing videos, (2.2) does not hold in general. In fact,
it is almost impossible to require an object that appears in the reference frame to be moved by
exactly half subpixel length in any other frame. Rather in any one frame, it may move to a distance
of ` pixels away where ` = n + ε, with n ∈ Z and |ε| ≤ 1/2. In that case, we can shift the frame
back by n pixels and consider the shifted frame as a displaced frame of the reference frame with
displacement equals ε. More precisely, instead of having the perfectly aligned low resolution signals
gi(·) at half subpixel length as in Figure 1 (Left), what we obtained are the shifted versions of gi,
i.e. we have

(2.11) g̃i(·) ≡ gi(·+ εi), 0 ≤ |εi| <
1

2
, i = 0, 1.

(If |εi| = 1/2, then the frame is moved exactly half subpixel, and hence is a frame obtained by the
other sensor.) The parameters εi are called the displacement errors. As in (2.4) and (2.6), g̃i can be
considered as the down-sample of f after it has passed through a filter of the form 1

2 [12−εi, 1,
1
2 +εi].

More precisely, we have

(2.12) g̃i = DiH(εi)f , i = 0, 1,

where Di is defined in (2.3), H(ε) = Toeplitz(a(ε)), and a(ε) = 1
2 [12 − ε, 1, 1

2 + ε].

One may verify that a(ε) = m0 +
√

2ε ·m1, with m0 and m1 defined in (2.8), see [4]. Therefore

H(ε) = H +
√

2εT1,

and hence

Hf = H(ε)f −
√

2εT1f .

In particular, gi can be obtained from g̃i via

(2.13) gi = DiHf = g̃i −
√

2DiεiT1f , i = 0, 1.

Thus by (2.13), the low resolution signal gi satisfying (2.6) can be extracted from the shifted signal
g̃i by correcting the displacement errors.

Define g̃ = U0g̃0 + U1g̃1 and

(2.14) gε =
√

2(U0D0ε0 + U1D1ε1)T1f .

Then by (2.5),

g = T0f = Hf = (U0D0 + U1D1)Hf = g̃− gε.

Substituting this into (2.10), we finally have the high-resolution reconstruction equation for signals
with displacement errors:

(2.15) f = T∗
0(g̃ − gε) +

2∑

i=1

T∗
i Tif .

Our algorithm is basically to iterate on this equation and (2.14). This is done in the next section.
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2.3. Resolution Enhancing Algorithm. Signals and images are usually contaminated with
noise, which are of high-frequency in nature. Equation (2.15) makes it easy to remove them.
In fact, since T1 and T2 are high-pass filters, noise are emphasized in the second term in (2.15).
Hence a thresholding approach can be used to denoise the signal or the image. Here we use a
framelet thresholding approach in [2].

For a given signal f , the first step in the denoising procedure is to decompose f in different levels
in the framelet domain so as to decorrelate the signal. For this, we need to define the framelet
decomposition operator AJ and its adjoint reconstruction operator A∗

J . Here J is the number
of levels we want to decompose our signals. To write the decomposition and reconstruction in
convolution forms, the filters used in the decomposition above the 0th level need to be dilated. For
levels 0 < j ≤ J , the dilated filters, denoted by {ml,j}2l=0, are defined by

ml,j(k) =

{
ml(2

−j+1k), k ∈ 2j−1
Z,

0, k ∈ Z \ 2j−1
Z,

where ml are given in (2.8). The corresponding Toeplitz matrix is Ml,j = Toeplitz(ml,j). With
these notations, we have

AJ =




∏1
j=J M0,j

M1,J

∏1
j=J−1 M0,j

M2,J

∏1
j=J−1 M0,j

M1,J−1
∏1

j=J−2 M0,j

...
M1,1

M2,1




and

A∗
J = [

J∏

j=1

M∗
0,j , (

J−1∏

j=1

M∗
0,j)M

∗
1,J , (

J−1∏

j=1

M∗
0,j)M

∗
2,J , (

J−2∏

j=1

M∗
0,j)M

∗
1,J−1, · · · ,M∗

1,1,M
∗
2,1].

Once a signal has been decomposed by AJ , the second step in the denoising procedure is to
threshold the framelet coefficients for levels j > 0. For any N -vector u, define the threshold
operator Dλ as

Dλ(u) ≡ [tλ(u(1)), tλ(u(2)), · · · , tλ(u(N))]t

where tλ(x) ≡ sgn(x)max(|x| − λ/2, 0) is the soft threshold function. The denoising operator T ,
with thresholding parameters λi,j, i = 1, 2, j = 1, · · · , J , is then defined as

(2.16) T AJv =




∏1
j=J M0,jv

Dλ1,J
(M1,J

∏1
j=J−1 M0,jv)

Dλ2,J
(M2,J

∏1
j=J−1 M0,jv)

Dλ1,J−1
(M1,J−1

∏1
j=J−2 M0,jv)

...
Dλ1,1

(M1,1v)
Dλ2,1

(M2,1v)




.

A typical choice for λi,j is λi,j = 2 ‖m0‖j−1 ‖mi‖ σ
√

log N , where ‖·‖ is the l2 norm and σ is
the variance of the Gaussian noise in the signal v estimated numerically by the method given in
[7]. We note that for i.i.d. Guassian random variables {ε1, ε2, · · · , εj} each with variance σ, if
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εN =
∑j

i=0 hiεi, then var(εN ) = σ‖[h1, h2, · · · , hj ]‖. Hence we have included the l2 norms of the
filters in λi,j above.

Incorporating this denoising operator into (2.15), we get the equation for the resolution enhance-
ment:

(2.17) f = T∗
0(g̃ − gε) +

2∑

i=1

T∗
iA∗

JT AJTif .

Our algorithm is to iterate f in this equation:

(2.18) fn+1 = T∗
0(g̃ − gε) +

2∑

i=1

T∗
iA∗

JT AJTifn, n = 0, 1, · · · .

In the next subsection, we show that if gε is fixed independent of f , then (2.18) is convergent.
However, from (2.14), gε is dependent on f . To overcome this, we use an alternate direction
approach: we fix gε and we iterate f by (2.18) until it converges. Once we get an updated f , we
compute an updated gε using (2.14). This results in the following algorithm:

Algorithm 1. Resolution Enhancement Algorithm for 1D Signal

(1) Let f̂ (0) = T∗
0g̃ and m = 1.

(2) Let f
(m)
0 = f̂ (m−1) and g

(m)
ε =

∑1
i=0

√
2UiDiεiT1f̂

(m−1).

(3) Iterate on f
(m)
n until it converges:

f
(m)
n+1 = T∗

0(g̃ − g(m)
ε ) +

2∑

i=1

T∗
iA∗

JT AJTif
(m)
n , n = 0, 1, · · · .

(4) Set f̂ (m) = f
(m)
n when converge.

(5) If ‖f̂ (m) − f̂ (m−1)‖ > tol , then set m + 1→ m and go to Step (2). Otherwise, end.

Numerical tests on real data show that both f and gε converges within 3–6 iterations, see the
numerical results in §5.

2.4. Convergence of the Algorithm. In this section, we prove the convergence of (2.18). The
following lemma, given in [6, Lemma 2.2], is needed for the proof.

Lemma 2.1. The thresholding operator Dλ is non-expansive, i.e. for any two vectors v1 and v2,

‖Dλ(v1)−Dλ(v2)‖ ≤ ‖v1 − v2‖ .

Furthermore, if T is the denoising operator defined by (2.16), then

‖T AJ(v1)− T AJ(v2)‖ ≤ ‖v1 − v2‖ .

In particular, T AJ is continuous and ‖T AJ(v)‖ ≤ ‖v‖ for all vectors v.

We note also that the N -by-N matrix T0 = ToeplitzHankel(m0) can be diagonalized and its
minimum eignvalue is equal to cos2(N−1

2N
π) > 0, see [12]. In other words, T0 is nonsingular.

Theorem 2.2. If T0 is nonsingular and gε is fixed, then (2.18) converges for any f0.
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Proof. Because T0 is nonsingular and I = T∗
0T0 +

∑2
i=1 T∗

i Ti, there exists a constant µ < 1, such

that
∥∥∥
∑2

i=1 T∗
i Ti

∥∥∥ = ‖I −T∗
0T0‖ ≤ µ. Let T∗ ≡ [T∗

1,T
∗
2]. Then

‖T‖2 = max
‖u‖=1

‖Tu‖2 = max
‖u‖=1

u∗
2∑

i=1

T∗
i Tiu =

∥∥∥∥∥

2∑

i=1

T∗
i Ti

∥∥∥∥∥ ≤ µ.

For any given f0 and any positive integers k and n, according to (2.18), we have

‖fn+k − fn‖ =

∥∥∥∥∥

2∑

i=1

T∗
iA∗

J(T AJTifn+k−1 − T AJTifn−1)

∥∥∥∥∥

=

∥∥∥∥T
∗A∗

J

[
T AJT1fn+k−1 − T AJT1fn−1

T AJT2fn+k−1 − T AJT2fn−1

]∥∥∥∥

≤ ‖T∗‖
∥∥∥∥
[
T AJT1fn+k−1 − T AJT1fn−1

T AJT2fn+k−1 − T AJT2fn−1

]∥∥∥∥

≤ ‖T∗‖
∥∥∥∥
[

T1fn+k−1 −T1fn−1

T2fn+k−1 −T2fn−1

]∥∥∥∥
≤ ‖T∗‖ ‖T‖ ‖fn+k−1 − fn−1‖
≤ µ ‖fn+k−1 − fn−1‖ ≤ µn ‖fk − f0‖ .

Using similar arguments on (2.18), we also get

‖fn‖ ≤ ‖g̃ − gε‖+ µ ‖fn−1‖ .
Applying this recursively from n back to 0, we then get

‖fn‖ ≤
1

1− µ
‖g̃ − gε‖+ ‖f0‖ ,

i.e., ‖fn‖ is bounded. Thus the sequence {fn}n is a Cauchy sequence and the limit exists. �

3. High-resolution Image Reconstruction

Next we extend the discussion of the previous section to 2D case.

3.1. The Model. High-resolution image reconstruction refers to the problem of constructing an
image with resolution N -by-N using low-resolution images of resolution M -by-M . For our discus-
sion here, it suffices to consider N = 2M . Similar to the 1D case in the last section, the desired
high resolution image is modeled as

f(n1, n2) ≡
1

T 2

∫ (n2+ 1

2
)T

(n2−
1

2
)T

∫ (n1+ 1

2
)T

(n1−
1

2
)T

f(x, y)dxdy,

whereas we are given the low resolution images gi,j :

gi,j(n1, n2) =
1

4T 2

∫ (2(n2+ 1

2
)+i)T

(2(n2−
1

2
)+i)T

∫ (2(n1+ 1

2
)+j)T

(2(n1−
1

2
)+j)T

f(x, y)dxdy, 0 ≤ i, j < 2, n1, n2 ∈ Z.

Here each gi,j differs from the other by a displacement of length T .
The observed high resolution image g can be composed in the following way

(3.1) gi,j [n1, n2] = g[2n1 + i, 2n2 + j], 0 ≤ i, j < 2, n1, n2 ∈ Z.
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We note that each low resolution image gi,j is the downsampled image of the observed image g at
specified sensor position (i, j). Therefore we will call gi,j the low resolution image at downsampling
position (i, j), or in short the (i, j)th image. The question again is to find f from g, see [1].

Define the 2D downsampling and upsampling matrices Di,j = Dj ⊗Di and Ui,j = Uj ⊗Ui. Then

we have, gi,j = Di,jg and g =
∑1

i,j=0 Ui,jgi,j . Again, Ui,j synthesizes g from the low resolution
images gi,j , whereas Di,j extracts the image gi,j back from g. We note that

1∑

i,j=0

Ui,jDi,j = IN2 , Di,jUi,j = IM2 , and Di1,j1Ui2,j2 = 0 if i1 6= i2, j1 6= j2.

The high-resolution image reconstruction can be modeled by (2.6) too with the filter matrix H

in this case becomes H = T0,0, where T0,0 is the low pass filter corresponding to the 2D framelet
transform which is the tensor product of its 1D cousin. More precisely, the 2D framelet filter
matrices are Tp,q = Tq ⊗ Tp and T∗

p,q = T∗
q ⊗ T∗

p, where Tp and T∗
q are given in (2.9). We also

have the perfect reconstruction formula:

2∑

i,j=0

T∗
i,jTi,j = IN2 .

Multiplying by the high resolution image f that we are seeking on both sides and substituting
T0,0f = Hf by g, we have

(3.2) f = T∗
0,0g +

2∑

i,j=0
(i,j)6=(0,0)

T∗
i,jTi,jf .

3.2. Correcting Displacement Errors. In practice, the low resolution images may not be aligned
exactly by length T as in (3.1) and displacement errors may exist. Similar to the 1D case, we can
correct the displacement error in each low resolution image by framelet systems.

Let the obtained low resolution images be

(3.3) g̃i,j(·, ·) = gi,j(·+ εx
i,j, ·+ εy

i,j)

rather than gi,j(·, ·), where

(3.4) 0 ≤ |εx
i,j|, |εy

i,j | <
1

2
, i, j = 0, 1,

see (2.11). Similar to (2.13), we have

gi,j = g̃i,j −Di,j

(√
2εx

i,jT0,1 +
√

2εy
i,jT1,0 + 2εx

i,jε
y
i,jT1,1

)
f ,

Let gε =
∑1

i,j=0 Ui,jDi,j

(√
2εx

i,jT0,1 +
√

2εy
i,jT1,0 + 2εx

i,jε
y
i,jT1,1

)
f and g̃ =

∑1
i,j=0 Ui,jg̃i,j. Then

(3.5) g = T0,0f = Hf =

1∑

i,j=0

Ui,jDi,jHf = g̃ − gε.
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Substituting this into (3.2), we have the high-resolution reconstruction equation for images with
displacement errors:

(3.6) f = T∗
0,0(g̃ − gε) +

2∑

i,j=0
(i,j)6=(0,0)

T∗
i,jTi,jf .

3.3. The Algorithm. As in §2.3, by embedding the denoising operator AJ into (3.6), we arrive
at the 2D resolution enhancement formula:

f = T∗
0,0(g̃ − gε) +

2∑

i,j=0
(i,j)6=(0,0)

T∗
i,jA∗

JT AJTi,jf .

This leads to the following algorithm:

Algorithm 2. Resolution Enhancement Algorithm for 2D Images

(1) f̂ (0) = T∗
0,0g̃ and m = 1.

(2) Let f
(m)
0 = f̂ (m−1) and

g(m)
ε =

1∑

i,j=0

Ui,jDi,j

(√
2εx

i,jT0,1 +
√

2εy
i,jT1,0 + 2εx

i,jε
y
i,jT1,1

)
f̂ (m−1).

(3) Iterate on f
(m)
n until it converges:

f
(m)
n+1 = T∗

0,0(g̃ − g(m)
ε ) +

2∑

i,j=0
(i,j)6=(0,0)

T∗
i,jA∗

JT AJTi,jf
(m)
n , n = 0, 1, · · · .

(4) Set f̂ (m) = f
(m)
n when converge.

(5) If
∥∥∥f̂ (m) − f̂ (m−1)

∥∥∥ > tol , then set m + 1→ m and go to Step (2). Otherwise, end.

Remark 3.1. The convergence of Step (3) can be proven using similar arguments as in Theorem
2.2.

4. Resolution Enhancement for Video Clips

Video clips consist of many still frames. Each frame can be considered as perturbations of its
nearby frames. Therefore we may generate images of higher resolution by exploiting the high
redundancy between the nearby frames. In this paper, for simplicity, we consider only doubling the
resolution of the reference frames. We will use the framelet method in §3. However, there are two
problems in video still enhancement that do not appear in the image enhancement discussed in §3:

(1) For each frame, we have to estimate its sensor position and displacement errors with respect
to the desired high-resolution reference frame.

(2) Not all low resolution images at all sensor positions are available.

In following subsections we will tackle these two questions. We will need to rectify Algorithm 2 to
suit the video applications.

Consider a sequence of frames {fk}Kk=−K in a given video clip, where k increases with the time
when the frame fk is captured. We aim to improve the resolution of the reference frame f0 by
incorporating information from frames {fk}k 6=0. For simplicity, we may consider f0 as the (0, 0)th
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image without displacement error. In order to use the framelet method in §3, for each fk, k 6= 0,
we have to estimate the sensor position (i, j) it corresponds to and its displacement error.

The images gi,j and g in (3.1) can be considered as the discretized version of the underlying
high-resolution image f at different sampling rate (see Figure 1 for 1D case). If we consider f being
defined on the real domain, then extending the definition of gi,j and g on the real domain, we have
the following half-pixel relationship between the low resolution images,

gi,j(x, y) = g[2x + i, 2y + j] = g0,0(x +
i

2
, y +

j

2
), 0 ≤ i, j < 2, x, y ∈ R.

If there are displacement errors in the low resolution images g̃i,j(x, y), then (3.3) gives

g̃i,j(x, y) = g0,0(x +
i

2
+

εx
i,j

2
, y +

j

2
+

εy
i,j

2
), 0 ≤ i, j < 2, x, y ∈ R.

This equation can be used to estimate the sensor position (sx
k, sy

k) and the displacement errors
(εx

k, εy
k) for the frame fk with respect to f0, i.e.

(4.1) (sx
k, sy

k, ε
x
k, εy

k) = arg min{0≤i,j≤1, 0≤|εx|,|εy|< 1

2
}

∑

x,y

[fk(x−
i

2
− εx

2
, y − j

2
− εy

2
)− f0(x, y)]2.

Equation (4.1) requires fk to be a translation of f0 only, which is generally not true in real appli-
cations. Therefore we first have to remove other motion effects in fk before we can estimate the
position and the displacement errors.

4.1. Estimating the Motion Parameters. Rather than using displacement vector field as in [16],
for computational efficiency, we restrict ourselves to affine transforms only, see [9]. In particular,
we assume that the frames {fk}k 6=0 are related to f0 by a coordinate transform, i.e.

(4.2) fk(Rkx− rk) ≈ f0(x), k 6= 0,

where x are the coordinates of the pixels in the region of interest, which may be the entire image
or part of the image. Denote

(4.3) x̃ ≡ Rx− r ≡
[

c0 c1

c3 c4

]
x +

[
c2

c5

]
=

[
c0 c1 c2

c3 c4 c5

] [
x

1

]
.

Our task is to estimate the parameters {ci}5i=0 for each frame f ∈ {fk}Kk=1. This is done by
minimizing the sum of squares of the intensity between f and f0 as mentioned in (4.1):

(4.4) E(f, f0) =
∑

j∈I

[f(Rxj − r)− f0(xj)]
2 ≡

∑

j∈I

e2
j ,

where I is the index set of pixels in the region of interest. Here and in the following, whenever
Rx− r 6∈ Z

2, we will evaluate f(Rx− r) by using the bilinear interpolation [13, pp. 126–132].
We solve (4.4) by using the Levenberg-Marquardt iterative nonlinear minimization algorithm

[15]. It updates c = [c0, . . . , c5] by an amount ∆c = (A + βI)−1b where β is a time-varying
stabilization parameter, and the entries of A and b are given by

(4.5) akl =
∑

j∈I

∂ej

∂ck

∂ej

∂cl

, and bk = −
∑

j∈I

ej

∂ej

∂ck

, 0 ≤ k, l ≤ 5.

The partial derivatives can be shown to be:

(4.6)
∂ej

∂c0
= xj

∂f

∂x̃
,

∂ej

∂c1
= yj

∂f

∂x̃
,

∂ej

∂c2
=

∂f

∂x̃
,

∂ej

∂c3
= xj

∂f

∂ỹ
,

∂ej

∂c4
= yj

∂f

∂ỹ
,

∂ej

∂c5
=

∂f

∂ỹ
.
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The advantage of using Levenberg-Marquardt over straightforward gradient descent is that it con-
verges in fewer iterations [13, pp. 686–694].

This is the algorithm.

Algorithm 3. (R, r)← Affine(f, f0): Estimating the parameters of the affine transform.

(1) Initialize n = 0, c(0) = [1, 0, 0, 0, 1, 0], and β = 0.001.
(2) For each xj in the region of interest:

(a) Compute x̃j = Rxj−r with entries of R and r given by c(n) as in (4.3) . Then compute
f(x̃j).

(b) Compute the error ej = f(x̃j) − f0(xj), the intensity gradient (∂f/∂x̃, ∂f/∂ỹ), and
hence the partial derivatives ∂ej/∂ck for all k as in (4.6).

(c) Accumulate the results to the corresponding entries in A and b as in (4.5).
(3) Compute 4c = (A + βI)−1b and update c(n+1) = c(n) +4c.
(4) If the error in (4.4) has decreased, go to Step (2); else increase β by 100 times and compute

a new 4c.
(5) Continue iterating until either the error is below a threshold or a fixed number of iterations

has been reached. Then return the R and r corresponding to c(n+1).

4.2. Removing Motion Effects. Since the framelet algorithm in §3 only handles translation
between frames, in this subsection, we remove other motion effects in the frames so that each frame
can be considered as a translation of the reference frame f0, i.e. it can be viewed as the (i, j)th low
resolution image with 0 ≤ i, j < 1. Then we determine the index (sx

k, sy
k) for each fk ∈ {fk}k 6=0,

and its corresponding displacement errors εx
k and εy

k.

Let f ∈ {fk}k 6=0, by (4.2), f0(x) ≈ f(Rx− r) = f [R(x−R−1r)]. Thus f(R(·)) can be viewed as
a translation of f0 with displacement vector −R−1r. Our task is to write

(4.7) R−1r = u +
1

2

[
sx

sy

]
+

1

2

[
εx

εy

]
,

where sx, sy ∈ {0, 1} and both |εx| and |εy| are less than 1/2 (see (3.4)). Then f̂(x) ≡ f(R(x−u))
can be considered as the low-resolution image gsx,sy with displacement errors (εx, εy). The following
is the algorithm.

Algorithm 4. (f̂ , sx, sy, εx, εy)← Register (f, f0): Register frame f against the reference frame f0.

(1) Use Algorithm 3 to compute (R, r)← Affine(f, f0).
(2) If the peak signal to noise ratio (PSNR) of [f0(x) − f(Rx− r)] is less than P0, then regis-

tration fails, return. Otherwise, compute [r̃1, r̃2]
t = R−1r.

(3) Let u ≡ [ br̃1 + 1
4c, br̃2 + 1

4c ]t, then [d1, d2] ≡ [r̃1, r̃2]− ut has entries in [− 1
4 , 3

4).

(4) Let [sx, sy] ≡ [ b2d1 + 1
2c, b2d2 + 1

2c ], then sx
i , sy

i ∈ {0, 1}.
(5) Let [εx, εy] ≡ [2d1 − sx, 2d2 − sy

i ], then |εx
i |, |ε

y
i | ≤ 1

2 , and (4.7) holds.

(6) f̂(x) ≡ f(R(x− u)).

The threshold P0 in Step (2) determines if f(Rx − r) is close enough to f0(x) or else we discard
the frame. We recall that PSNR for M -by-N color images with 8 bits for each red (r), green (g)
and blue (b) channel is defined as:

PSNR of [u− x] = 10 log10

2552

1
3MN

∑M
i−1

∑N
j=1

∑
k=r,g,b(u

(k)
i,j − x

(k)
i,j )

(dB).

In the experiments, we set P0 = 25dB.
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4.3. The Video Still Enhancing Algorithm. Our video enhancing algorithm operates on one
frame at a time. First we check if the incoming frame is useful or not by using Algorithm 4. If it is
registered, we will incorporate it to enhance f0 by using the high-resolution image reconstruction
method in §3. More precisely, assume that the registered frame f̂ is the (sx, sy)th low resolution
image with displacement error (εx, εy), i.e.

f̂(·) = g̃sx,sy(·, ·) = gsx,sy(·+ εx, ·+ εy),

cf (3.3). The method in §3 assumes that we have a complete set of low resolution images {g̃i,j}1i,j=0,
whereas here we only have one. Our idea is to generate the missing low resolution images by
downsampling the current high resolution approximation of f0 with zero displacement errors, i.e.
g̃i,j = Di,jHh with (εx

i,j , ε
y
i,j) = (0, 0) for all (i, j) 6= (sx, sy), see (2.12).

From (3.5), we know that,

g = g̃ − gε

=

1∑

i,j=0

Ui,j

[
g̃i,j −Di,j

(√
2εx

i,jT0,1 +
√

2εy
i,jT1,0 + 2εx

i,jε
y
i,jT1,1

)]
h

=

1∑

i,j=0,
(i,j)6=(sx,sy)

Ui,jDi,jT0,0h + Usx,sy

[
f̂ −Dsx,sy(

√
2εxT0,1 +

√
2εyT1,0 + 2εxεyT1,1)

]
h.

This leads to the following algorithm:

Algorithm 5. h ← Update(h, f̂ , sx, sy, εx, εy): Update the high resolution image h by a registered

frame f̂ with parameters (sx, sy, εx, εy).

(1) Let ĥ(0) = h and m = 0

(2) Let g
(m+1)
ε = Usx,syDsx,sy(

√
2εxT0,1 +

√
2εyT1,0 + 2εxεyT1,1)ĥ

(m).

(3) If PSNR[f̂ −Dsx,syg
(m+1)
ε −Dsx,syT0,0ĥ

(m)] < 50dB, then m + 1→ m and h
(m)
0 = ĥ(m−1).

Otherwise, ĥ(m) → h, end.

(4) Iterate on h
(m)
n until convergence:

(a) gi,j =

{
f̂ −Dsx,syg

(m)
ε , (i, j) = (sx, sy),

Di,jT0,0h
(m)
n , else.

(b) g =
∑1

i,j=0 Ui,jgi,j.

(c) h
(m)
n+1 = T∗

0,0g +
2∑

i,j=0
(i,j)6=(0,0)

T∗
i,jA∗

JT AJTi,jh
(m)
n .

(5) Set ĥ(m) = h
(m)
n when converge, and go back to Step (2).

Remark 4.1.

(1) We stop Step (4) when the PSNR of the difference of two consecutive g is greater than
40dB.

(2) In our experiments, we set J = 3. Step (3) usually converges in 2–3 iterations, while Step
(4) in 3–6 iterations when m = 1 and the number of iterations decreases with increasing m.

In the following we give the complete algorithms of our method. Given a reference frame f0, it
is conceivable that the frames taken just before or after f0 will give the most relevant information
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regarding f0. Thus we write our algorithm for a sequence of 2K frames {fk}Kk=−K that are taken
just before and after the reference frame f0.

Algorithm 6. Resolution Enhancement for Video Clips I.

(1) Obtain an initial guess of the high resolution image h by using bilinear interpolation on f0.
(2) for j = −1, 1,−2, 2, · · · ,−K,K:

(a) Apply Algorithm 4 to get (f̂j , s
x
j , s

y
j , ε

x
j , εy

j )← Register(fj , f0).

(b) If registration is successful, use Algorithm 5 to update h← Update(h, f̂j , s
x
j , sy

j , ε
x
j , εy

j ).

Algorithm 6 uses the new information from good frames to update f0. Its advantage is that it
chooses the good candidate frames automatically and there is no need to determine the number of
frames to be used in advance. It applies each good frame once. The next algorithm applies each
good frame twice, one forward and one backward. The results are better but it is slower.

Algorithm 7. Resolution Enhancement for Video Clips II.

(1) Obtain an initial guess of h by using bilinear interpolation on f0. Set ` = 0.
(2) for j = −1, 1,−2, 2, · · · ,−K,K:

(a) Apply Algorithm 4 to get (f̂j , s
x
j , s

y
j , ε

x
j , εy

j )← Register(fj , f0).

(b) If registration is successful, then, pl ← (f̂j , s
x
j , sy

j , ε
x
j , εy

j ), apply Algorithm 5 to update

h← Update(h,pl) and `← ` + 1.
(3) for i = `− 1, · · · , 0:

Apply Algorithm 5 to update h← Update(h,pi).

One can easily extend our algorithms to color images. In color imaging, it is well-known that the
intensity component plays the most important role amongst all color components. Thus given a
color image, we first change it from the RGB color space to the YCrCb color space, see [8]. Then we
apply our algorithms to each of the components in the YCrCb space simultaneously. More precisely,
we have f = (fY , fCr, fCb) in the algorithms. However we use the Y (the intensity) component for
the stopping criteria, e.g. Step (3) of Algorithm 5 will stop if

PSNR{f̂Y −Dsx,sy [g(m+1)
ε ]Y −Dsx,syT0,0[ĥ

(m)]Y } > 50dB.

5. Experimental Results

In this section, we implement and test our resolution enhancement algorithms for two video clips.
The first one is filmed by us by panning our video camcorder over some books on a table. The clip
is in CIF format with size 352-by-288 and can be downloaded at [17]. In the five second video clip,
we choose the 100th frame as our reference frame f0, see Figure 2. Figure 3 gives the first guess of
the high resolution image of f0, which is obtained by the bilinear interpolation on f0. It is of size
704-by-576. We let K = 10, i.e. we use the 91th to 110th frames to improve the resolution of f0.
The results of Algorithms 6 and 7 are shown in Figures 4 and 5 respectively.

The alignment parameters of frames {fk}110k=90 using Algorithm 4 are listed in Table 1. The first
column is the index of the frame; the second and the third columns list low resolution image index
(sx, sy) and displacement error (εx, εy) for each frame; and the fourth column indicates whether the
frame is close to the reference frame f100. Note that frames f94, f95, and f109 are discarded.

From the resulting high resolution images, the words in the title of the books such as “Linear
Analysis and Differential Equations”, “Programmer’s Guide”, and “Classical Fourier Transforms”
are clearly discernible. This is very difficult to do from the original frame or from the video clip
themselves. Moreover the number “98” on the yellow book “Box Spline” is much clearer in Figure
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Table 1. Alignment Results from Algorithm 4 for Book Clip

Frame Index (sx, sy) (εx, εy) f0(x) ≈ f(Rx + r)
101 (1,0) (-0.237, 0.150) Yes
99 (0,0) (-0.409,-0.180) Yes

102 (0,0) (-0.153,-0.162) Yes
98 (0,1) ( 0.464, 0.314) Yes

103 (0,0) ( 0.437, 0.216) Yes
97 (0,1) ( 0.178, 0.402) Yes

104 (1,0) ( 0.478,-0.101) Yes
96 (1,0) ( 0.453,-0.343) Yes

105 (1,0) (-0.465, 0.014) Yes
95 . . . . . . No

106 (0,0) (-0.271,-0.129) Yes
94 . . . . . . No

107 (1,0) (-0.021,-0.036) Yes
93 (1,0) (-0.335,-0.449) Yes

108 (0,1) ( 0.044, 0.420) Yes
92 (0,0) (-0.057,-0.336) Yes

109 . . . . . . No

91 (0,0) (-0.049,-0.456) Yes
110 (1,0) (-0.453, 0.052) Yes
90 (0,1) (-0.136, 0.093) Yes

Figure 2. The 100th Low Resolution Frame

5 than in Figure 4. To compare them more clearly, in Figure 6 we give the zoom-in results for this
part of the image. Note that it is impossible to read this number from the video clip or just by
using interpolation on the reference frame.

We note that in [5], we have used a rudimentary version of the algorithm proposed here to
enhance the same video clip. Although the numerical results are similar, one major difference
between the two algorithms is that in [5], symmetirc boundary condition is used. The resulting
blurring matrix T0 may then be singular. Hence, one cannot establish convergence theorem like
that in Theorem 2.2 here.
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Figure 3. First Guess of the High Resolution Image

Next we test our algorithm on another video clips given in [10], with the courtesy of University
of Maryland at College Park. The video clip is a box moved by a person. The frame rate is 15 and
the resolution is 512-by-384. We cropped a central part of the images with resolution 96-by-128
manually for the demonstration of our algorithm.

In the 1.5 seconds of the video clip, we choose the 11th frame as our reference frame f0, see Figure
7. Figure 8 gives the first guess of the high-resolution image of f0 by the bilinear interpolation.
It is of size 192-by-256. We let K = 10, i.e. we use the 1st to the 19th frames to improve the
resolution of f0. The results are shown in Figure 8. Note that the third row of the texts is much
clearer using our algorithm than by the interpolation. The alignment parameters for this clip are
listed in Table 2, which shows that all frames are used for this video clip.

From the two experiments, we see that the image contents of the reference frames have been
improved much by our algorithms as it can reveal information that are not discernible in the video
clips or by simple interpolation.

6. Conclusions

In this paper, we propose algorithms to generate high resolution images from video clips. The
results show that the reconstructed images can disclose information that cannot be found either in
the original frames or in the video clips themselves. Although we have restricted our discussions
to enhancement ratio L equal to 2 (see the definition of L in §2.1), it is straightforward to modify
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Figure 4. Reconstructed High Resolution Image using Algorithm 6

Table 2. Alignment Results of Algorithm 4 for Box Clip

Frame Index (sx, sy) (εx, εy) f0(x) ≈ f(Rx + r)
12 (1,0) (-0.279,-0.475) Yes
10 (1,1) ( 0.401,-0.491) Yes
13 (0,1) (-0.040,-0.071) Yes
9 (1,1) (-0.238, 0.406) Yes

14 (1,0) ( 0.404, 0.337) Yes
8 (0,0) ( 0.029, 0.022) Yes

15 (1,0) (-0.342,-0.084) Yes
7 (1,0) ( 0.335, 0.307) Yes

16 (1,1) (-0.236, 0.438) Yes
6 (1,1) (-0.333,-0.386) Yes

17 (1,1) ( 0.331,-0.492) Yes
5 (0,1) ( 0.161,-0.158) Yes

18 (0,0) (-0.278,-0.296) Yes
4 (1,0) (-0.313,-0.460) Yes

19 (0,1) ( 0.299, 0.098) Yes
3 (1,0) ( 0.062,-0.004) Yes
2 (1,1) ( 0.177,-0.466) Yes
1 (0,1) ( 0.173,-0.080) Yes
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Figure 5. Reconstructed High Resolution Image using Algorithm 7

Figure 6. Zoom-in of Figure 3 (First Guess), Figure 4 (Algorithm 6) and Figure
5 (Algorithm 7)

our algorithm to larger L. For example, (3.4) will have to be changed to:

0 ≤ |εx
i,j|, |εy

i,j | <
1

L
, i, j = 0, 1, · · · , L− 1.

Unlike the works in [11, 16], where motion vectors are exploited for the resolution enhancement,
only affine model for translation is considered here. Therefore, frames that are far away from the
reference frame may not be registered by our method, even though they may share a big portion
in common with the reference frame. Our future work will focus on more complicated scenarios to
include motion models other than affine translations.
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Figure 7. The 11th Low Resolution Frame

Figure 8. First Guess by Bi-linear Interpolation (Left), High Resolution Image
from Algorithm 6 (Center) and from Algorithm 7 (Right)
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