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Abstract

High�resolution image reconstruction arises in many applications� such as remote sensing�
surveillance� and medical imaging� The model of Bose and Boo ��� can be viewed as the pas�
sage of the high�resolution image through a blurring kernel built from the tensor product of a
univariate low�pass �lter of the form
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� where � is the displacement error�

When the number L of low�resolution sensors is even� tight frame symmetric framelet �lters were
constructed in ��� from this low�pass �lter using the unitary extension principle of ����� The
framelet �lters do not depend on �� and hence the resulting algorithm reduces to that of the case
where �  �� Furthermore� the framelet method works for symmetric boundary conditions� This
greatly simpli�es the algorithm� However� both the design of the tight framelets and extension to
symmetric boundary are only for even L and cannot be applied to the case when L is odd� In this
paper� we design tight framelets and derive a tight framelet algorithm with symmetric boundary
conditions that work for both odd and even L� An analysis of the convergence of the algorithms
is also given� The details of the implementations of the algorithm are also given�

� Introduction

The resolution of digital images is a critical factor in many visual�communication related applications
including remote sensing� military imaging� surveillance� medical imaging� and law enforcement�
Although high�resolution �HR� images o�er human observers accurate details of the target� the
high cost of HR sensors is a factor as is the reliability of a single�node sensor� With an array
of inexpensive low�resolution �LR� sensors positioned around the target� it becomes possible to
use the information collected from distributed sources to reconstruct a desirable HR image at the
destination� Much research has been done in the last three decades on the HR image reconstruction
problems� Determined by the method of image reconstruction� previous work on high�resolution
can be approximately classi�ed into the following four major categories	 frequency domain methods�
interpolation�restoration methods� statistical based methods� and iterative spatial domain methods�

The earliest formulation of the problem was proposed by Huang and Tsay in 
�� and was moti�
vated by the need of improved resolution images from Landsat image data� They used the frequency
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domain approach to demonstrate reconstruction of one improved resolution image from several down�
sampled noise�free versions of it� Kim el al� 
�� suggested a simple generalization of this idea to
noisy and blurred images using the aliasing relationship between the under�sampled LR frames and
a reference frame to solve the problem by a weighted recursive least squares method� The frequency
domain methods are intuitively simple and computationally cheap� However� they are extremely
sensitive to model errors� and that limits their use 
�� This sensitivity to model errors has been
improved by the development and use of a recursive total least squares �error�in�variables� algorithm
in 
� to handle errors not only in observation but also errors in the estimation of shifts between
frames�

Ur and Gross 
�� applied Papoulis� 
�� and Yen�s 
�� generalized multichannel sampling the�
orem to interpolate values on a higher resolution grid� Irain and Peleg 
��� �� employed iterative
back projection method to iteratively update the HR estimate� Tekalp et al� 
��� �� and Stark
and Oskoui 
�� used the theory of Projection�Onto�Convex�Sets to solve the problem of restoration
and interpolation� Nguyen et al� 
�� developed a super�resolution algorithm by interpolating inter�
laced data using wavelets� Recently� Lertrattanapanich and Bose 
�� proposed a so�called Delaunay
triangulation interpolation method for high�resolution image reconstruction�

Statistical models for super�resolution image reconstruction problems have appeared in the lit�
erature recently� Schultz and Stevenson 
�� used Maximum a Posteriori �MAP� estimator with
the Huber�Markov Random Filed prior� Hardie et al� 
�� proposed a joint MAP registration and
restoration algorithm using a Gibbs image prior�

Iterative spatial domain methods are popular class of methods for solving the problems of reso�
lution enhancement 
�� ��� ��� ��� ��� ��� ��� ��� ��� ��� The problems are formulated as Tikhonov
regularization� Much work has been devoted to the e�cient calculation of the reconstruction and
the estimation of the associated hyperparameters by taking advantage of the inherent structures in
the HR system matrix� Bose and Boo 
� use a block semi�circulant matrix decomposition in order
to calculate the MAP reconstruction� Ng et al� 
�� and Ng and Yip 
�� proposed a fast DCT�based
approach for HR image reconstruction with Neumann boundary condition� Nguyen et al� 
��� ��
also addressed the problem of e�cient calculation� The proper choice of the regularization tuning
parameter is crucial to achieving robustness in the presence of noise and avoiding trial�and�error in
the selection of an optimal tuning parameter� To this end� Bose et al� 
� used a L�curve based
approach� Nguyen et al� 
�� used a generalized cross�validation method� Molona et al� 
�� used an
EM algorithm�

The reconstruction of HR images from multiple LR image frames can be modeled by

g � Hf � � ���

where f is the desired HR image� H is the blurring kernel� g is the observed HR image formed from
the low�resolution images� and � is noise� Recently� new approaches for HR image reconstruction
problems using wavelet techniques have been proposed by Chan et al� in 
�� �� �� The problem of HR
image reconstruction is understood and analyzed under the framework of multi�resolution analysis
of L��R� � by recognizing the blurring kernel H as a low�pass �lter associated with a multi�resolution
analysis� This low�pass �lter is a tensor product of the univariate low�pass �lter	

L��m� �
�

L

����
�
� ��

L� �z �� �
�� � � � � �� �

�
� �

��	 ���

where the parameter � is di�erent in the x and y directions for each sensor�
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The reasoning within the wavelet framework provides the intuition for new algorithms� The
wavelet�based HR image reconstruction algorithms in 
�� �� � are developed through the perfect
reconstruction formula of a bi�orthogonal wavelet system which has ��� as its primary low�pass
�lter� The algorithms approximate iteratively the wavelet coe�cients folded by the given low�pass
�lter� By incorporating the wavelet analysis viewpoint� many available techniques developed in the
wavelet literature� such as wavelet�based denoising schemes� can be applied to the problem� The �rst
requirement is the construction of a bi�orthogonal wavelet system with ��� as its primary low�pass
�lter� Examples for L � � and � are given in 
� for � � � and in 
� for � �� �� Minimally supported
bi�orthogonal wavelet systems with ��� as primary low�pass �lter are constructed for arbitrary integer
L � � and any real number j�j � ��� in 
��� For the case without displacement error �i�e�� when all
� � ��� the corresponding blurring kernel H is spatially invariant and ��� is actually a de�convolution
problem� The proposed algorithm in 
� outperforms the least squares method in terms of peak
signal�to�noise ratio �PSNR��

For the case with displacement error �i�e�� some � �� ��� the corresponding blurring kernel H is
spatially variant� The performance of the proposed algorithm in 
� is comparable with that of the
least squares method� We note that the algorithm in 
� is a nontrivial extension of the algorithmic
framework of 
�� which applies only to spatially invariant blurring operators� There are several
issues a�ecting the performance of the wavelet approach for problems with displacement errors�
First� the design of the �lters L��m� is related to displacement errors� As shown in 
�� �� the image
is represented in the multiresolution analysis generated by a dual low�pass �lter� the regularity of the
dual scaling function plays a key role in the performance of wavelet�based algorithms� However� the
regularity of scaling functions varies with the displacement errors� and in some cases� the function
can even be discontinuous 
��� Although the regularity can be improved by increasing the vanishing
moments of the dual low�pass �lter� it would produce ringing e�ects and increase the computational
complexity� Second� since the �lters L��m� are not symmetric� we can only impose periodic boundary
conditions� However� numerical results from both the least squares and wavelet methods show that
symmetric boundary conditions usually provide much better performance than do periodic boundary
conditions �e�g�� 
�� �� ����

To overcome these two problems� we proposed a new algorithm based on a tight framelet system
for every even number L �see 
��� The key idea is to decompose the low�pass �lter L��m� into a
low�pass �lter �corresponding to � � �� and a high�pass �lter� More precisely�

L��m� � L�� �
p
�� L��� ���

where

L�� �
�

�L

��

L� �z �� �
�� � � � � �� � and L�� �

p
�

�L

��

L� �z �� �
�� � � � � ����� ���

The construction of the tight framelet system with L�� as low�pass �lter and L�� as one of its high�
pass �lters can be given explicitly for even integers L � � through piecewise linear tight framelets
�see 
��� Numerical experiments there show that the framelet approach is much better than the
wavelet approach in 
�� �� This current paper was necessitated because both the design of tight
framelets with ��� as its low�pass �lter and the extension to symmetric boundary conditions in 
�
could not be applied to the case when L is odd�

The outline of the paper is as follows� In x�� we introduce the model by Bose and Boo 
�� In x��
we construct tight framelet systems for HR image reconstruction� An analysis of the convergence of
the algorithms is also given� Matrix implementations of the designed tight framelet are given under
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symmetric boundary conditions in x�� Tight framelet based HR image reconstruction algorithms are
developed in x�� Numerical experiments are illustrated in x�� Finally� our conclusion is given in x��

For the rest of the paper� we will use the following notations� Bold�faced characters indicate
vectors and matrices� The numbering of matrix and vector starts from �� The matrix Lt denotes the
transpose of the matrix L� The symbols I and � denote the identity and zero matrices respectively�
For a given function f � L��R�� bf�	� �

R
R
f�x�e�jx�dx denotes the Fourier transform of f � For

a given sequence m� bm�	� �
P

k�Zm�k�e�jk� denotes the Fourier series of m� and bm denotes the
complex conjugate of bm� The Kronecker delta function is 
k�l � � if k � l and � otherwise�

To describe Toeplitz and Hankel matrices� we use the following notations	

Toeplitz�a�b� �


BBBBB�
a� a� � � � aN�� aN��
b� a� � � � aN�� aN��
���

���
� � �

���
���

bN�� bN�� � � � a� a�
bN�� bN�� � � � b� a�

�CCCCCA � with a� � b��

and

Hankel�a�b� �


BBBBB�
a� a� � � � aN�� aN��
a� a� � � � aN�� bN��
���

���
� � �

���
���

aN�� aN�� � � � b� b�
aN�� bN�� � � � b� b�

�CCCCCA � with aN�� � bN���

The matrix PseudoHankel�a�b� is formed from Hankel�a�b� by replacing both the �rst column and
the last column with zero vectors� i�e��

PseudoHankel�a�b� �


BBBBB�
� a� � � � aN�� �
� a� � � � aN�� �
���

���
� � �

���
���

� aN�� � � � b� �
� bN�� � � � b� �

�CCCCCA � with aN�� � bN���

� Mathematical Model for High�Resolution Image Reconstruction

The system ��� is ill�posed� Usually it is solved by Tikhonov�s regularization method� The Tikhonov�
regularized solution is de�ned to be the unique minimizer of

min
f

kHf � gk� � �R�f�
�

���

where R�f� is a regularization functional� The basic idea of regularization is to replace the original
ill�posed problem with a �nearby� well�posed problem whose solution approximates the required so�
lution� The regularization parameter � provides a tradeo� between �delity to the measurements and
noise sensitivity� High�resolution reconstruction consists of two separate problems	 image registra�
tion and image reconstruction� Image registration refers to the estimation of relative displacements
with respect to the reference low�resolution frame� and image reconstruction refers to the stage of
restoring the HR image� In this paper� we focus on the case where the registration is not required�

We follow the high�resolution reconstruction model proposed by Bose and Boo 
�� Consider a
sensor array with L� L sensors in which each sensor has N� �N� sensing elements and the size of
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each sensing element is T��T�� Our aim is to reconstruct an image with resolution M��M�� where
M� � L�N� and M� � L�N��

In order to have enough information to resolve the high�resolution image� there are subpixel
displacements between the sensors in the sensor arrays� For sensor ���� ���� � � ��� �� � L with
���� ��� �� ��� ��� its vertical and horizontal displacements dx����� and dy����� with respect to the ��� ��th
reference sensor are given by

dx����� �
�
�� � �x�����

� T�
L

and dy����� �
�
�� � �y�����

� T�
L
�

Here �x����� and �y����� are the vertical and horizontal displacement errors respectively� We assume that

j�x����� j �
�

�
and j�y����� j �

�

�
�

For sensor ���� ���� the average intensity registered at its �n�� n��th pixel is modeled by	

g����� 
n�� n� �
�

T�T�

Z T��n�������dx�� ���

T��n�������dx�� ���

Z T��n�������d
y
�� ���

T��n�������dy�� ���
f�x� y�dxdy � ������ 
n�� n�� ���

Here � � n� � N� and � � n� � N� and ������ 
n�� n� is the noise� see 
�� We intersperse all the
low�resolution images g����� to form an M� �M� image g by assigning

g
Ln� � ��� Ln� � �� � g����� 
n�� n��

The image g is already a high�resolution image and is called the observed high�resolution image� It is
already a better image than any one of the low�resolution samples g����� themselves� c�f� the �gures
in the second row with those in the �rst row in Figures ����

To obtain an even better image than g �e�g� �gures in the bottom two rows in Figures ����� one
will have to �nd f from ���� One way is to discretize ��� using the rectangular quadrature rule and
then solve the discrete system for f � Since the right hand side of ��� involves the values of f outside
the scene �i�e� outside the domain of g�� the resulting system will have more unknowns than the
number of equations� and one has to impose boundary conditions on f for points outside the scene�
see e�g� 
�� Then the blurring matrix corresponding to the ���� ���th sensor is given by a square
matrix of the form

H�������
x
����� � �

y
�����

� � Hy��y������	Hx��x������� ���

The matrices Hx��x������ and Hy��y������ vary under di�erent boundary conditions and will be given
later�

The blurring matrix for the whole sensor array is made up of blurring matrices from each sensor	

H��x� �y� �
L��X
����

L��X
����

D�����H�������
x
����� � �

y
�����

� ���

where �
x � 
�x����� 

L��
�������

and �
y � 
�y����� 

L��
�������

� Here D����� is the sampling matrix for the ���� ���th
sensor� and is given by

D����� � D�� 	D�� ���

where D�j � INj
	 et�j with e�j the j�th unit vector�
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Let f and g be the column vectors formed by f and g� The model of the reconstruction of
high�resolution images from multiple low�resolution image frames becomes

g � H��x� �y�f � �� ����

The Tikhonov�regularization model in ��� becomes

�H��x� �y�tH��x� �y� � �R�f � H��x� �y�tg ����

where R is the matrix corresponding to the regularization functional R in ����
Several di�erent methods have been proposed to solve the system ���� in the literature� In the

case of no displacement errors� i�e� �
x � �

y � �� the blurring matrix H����� in ���� exhibits very
rich algebraic structure� In fact� by imposing traditional zero�padding boundary condition� H�����
is a block�Toeplitz�Toeplitz�block matrix �see 
��� By imposing the periodic boundary condition�
H����� in ���� is a block�circulant�circulant�block matrix� The resulting Tikhonov system ���� is
then solved by fast Fourier transform� By imposing Neumann boundary condition� H����� in ���� is
a block Toeplitz�plus�Hankel with Toeplitz�plus�Hankel blocks� The resulting Tikhonov system ����
is then solved by fast cosine transform in 
��� In the case with displacement errors� one can use
the matrices H����� as a preconditioner for H��x� �y�� and solve the systems by the preconditioned
conjugate gradient method� see 
�� ���

A di�erent viewpoint was proposed in 
�� � for understanding ����� By ���� the observed image g
is formed by sampling and summing di�erent blurring imagesH�������

x
�����

� �y������f � The low�resolution

imageD�����H�������
x
�����

� �y������f � which results from the sampling ofH�������
x
�����

� �y������f � is considered
as the output of the image f passing through a low�pass �lter which associates with a multiresolution
analysis of L��R� �� An algorithm was then derived to solve the problem ���� using low�pass �lters
and their duals 
�� ��

� Tight Framelet Systems and Analysis of Algorithms

No matter which boundary condition is imposed on the model� the interior row ofHx��x������ �similarly

of Hy��y������� is given by

�

L

����� � � � � �� �
�
� �x����� �

L� �z �� �
�� � � � � �� �

�
� �x����� � �� � � � � �

��	 � ����

This motivated us in 
�� � to consider the blurring matrix Hy��y������	Hx��x������ as a low�pass �lter
acting on the image f � This low�pass �lter is a tensor product of the univariate low�pass �lter ����
Using this observation� wavelet algorithms based on bi�orthogonal wavelet systems were proposed in

�� � and a tight framelet based algorithm was then developed in 
�� The numerical experiments in

� illustrated the e�ectiveness of the tight framelet based HR image reconstruction over the wavelet
approach in 
�� �� However� in 
�� we only consider the case where L is even� In fact� both the
approach for designing tight framelets with ���� as its low�pass �lter and the symmetric boundary
extension for even number L given in 
� cannot be applied to the case of odd number L� In this
section� we will give a di�erent method from 
� to derive the tight framelets for an arbitrary integer
L� Two algorithms are also proposed in the Fourier domain�
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��� Tight framelet system

The construction of compactly supported �bi��orthonormal wavelet bases of arbitrarily high smooth�
ness has been widely studied since Ingrid Daubechies�s celebrated works 
��� ��� Tight frames
generalize orthonormal systems and give more �exibility in �lter designs� A system X 
 L��R� is
called a tight frame of L��R� if X

h�X
jhf� hij� � kfk��

holds for all f � L��R�� where h�� �i and k � k � h�� �i��� are the inner product and norm of L��R��
This is equivalent to X

h�X
hf� hih � f� f � L��R��

Hence� like an orthonormal system� one can use the same system X for both the decomposition and
reconstruction processes� They preserve the unitary property of the relevant analysis and synthesis
operators� while sacri�cing the orthonormality and the linear independence of the system in order
to get more �exibility�

If X is the collection of dilations of Lj � j � Z� and shifts of a �nite set � 
 L��R�� i�e��

X��� � f�
j�k 	  � �� � � � � r� j� k � Zg� ����

where �
j�k�t� � Lj����Lj � �k�� then X��� is called� in general� a wavelet system� When X���

forms an orthonormal basis of L��R�� it is called an orthonormal wavelet system� In this case the
elements in � are called the orthonormal wavelets� When X��� is a tight frame for L��R� and � is
generated via a multiresoultaion analysis� then each element of � is called a tight framelet� and X���
is called a tight framelet system� Tight framelet systems generalize orthonormal wavelet systems�

��� Construction of tight framelets

The low�pass �lter in ����� denoted by L��m�� can be considered as a combination of a low�pass �lter
�corresponding to � � �� and a high�pass �lter� More precisely�

L��m� � �

L

����
�
� ��

L� �z �� �
�� � � � � �� �

�
� �

��	 � Lm� � �� Lm�� ����

where

Lm� �
�

�L

��

L� �z �� �
�� � � � � �� � and Lm� �

�

�L

��

L� �z �� �
�� � � � � ����� ����

Note that Lm� in ���� is the same as L�� in ���� However� Lm� in ���� di�ers from L�� in ��� by a
factor of

p
��

Let

L
b��	� � ��Y

k��

Lm��	�L
k��

Then L� is a compactly supported scaling function with dilation L� and Lm� is the low�pass �lter
associated with the scaling function L�� Moreover� L� is H older continuous with H older exponent
of ln �� lnL� see 
��� Furthermore� the sequence of spaces de�ned by

V� � spanf��� � k� 	 k � Zg� Vj � fh�Lj �� 	 h � V�g� j � Z

�



forms a multiresolution analysis� Recall that a multiresolution analysis �MRA� generated by � is a
family of closed subspaces fVjgj�Z of L��R� that satis�es	 �i� Vj 
 Vj��� �ii�

S
j Vj is dense in L��R��

and �iii�
T
j Vj � f�g �see 
�� and 
����

Our purpose is then to construct a tight framelet system with Lm� as a low�pass �lter and Lm�

high�pass �lter� There is a growing interest in construction tight framelets derived from re�nable
functions since Ron and Shen suggested the !Unitary Extension Principle� in 
��� Recently� the
unitary extension principle was further extended independently by Daubechies� Han� Ron and Shen
in 
�� and Chui� He and St ockler in 
�� to the Oblique Extension Principle� These two principles
lead to some systematic constructions of tight framelets from MRA generated by various re�nable
functions �see 
��� ��� ��� ��� ���� Here� we will use the unitary extension principle to design a
tight framelet system from a given re�nable function and a wavelet generator� The motivation for
considering this problem is derived from our practical requirement as mentioned above�

To present our result� let us introduce some further notations� We start with the low�pass �lter
corresponding to the Haar wavelet with dilation P �

PHaar� �
�

P

�� �� � � � � ��

Then� the corresponding �orthonormal� Haar wavelet masks �high�pass �lters� can be obtained via
DCT III as

PHaarp �

p
�

P

�
cos

� p�
�P

�
� cos

�
�p�

�P

�
� � � � � cos

�
��P � ��p�

�P

��
� p � �� � � � P � ��

Further� they satisfy

P��X
p��

P
�Haarp�	� P�Haarp�	 �

���

P
� � 
���� � � �� � � � � P � �� ����

where P
�Haarp is the Fourier series of PHaarp� p � �� � � � � � P � ��

Now we can design a tight framelets with Lm� as low�pass �lter and Lm� as one of its high�pass
�lters� The basic idea is that the �lter Lm� and Lm� can be interpreted as the sum and di�erence
of the elementary �lter �

L 
�� � � � � �� For example� for L � �� we have

�

�L

�� �� �� �� � �

�

�L

�� �� �� �� � �

�

�L

�� �� �� �� ��

�

�L

�� �� �� ���� �

�

�L

�� �� �� �� � � �

�L

�� �� �� �� ��

That is� in the Fourier domain

	 bm��	� � �
�Haar��	� 	�Haar��	�� and 	 bm��	� � �

�Haar��	� 	�Haar��	��

In general� for an arbitrary L� we have

L bm��	� � �
�Haar��	� L�Haar��	�� and L bm��	� � �

�Haar��	� L�Haar��	��

Motivated from the above equations� we de�ne

L bm�p�q�	� � �
�Haarq�	� L�Haarp�	� ����

�



where q � f�� �g and p � �� � � � � L� �� It follows from ���� that

�X
q��

L��X
p��

L bm�p�q�	� L bm�p�q

�
	 �

���

L

�
� 
���� � � �� � � � � L� �� ����

With this� the Unitary Extension Principle of 
�� implies that the functions

� � f L�p�q 	 � � p � L� �� q � �� �� �p� q� �� ��� ��g

de�ned by

L
b�p�q�	� � L bm�p�q

�	
�

�
L
b��	

�

�
�

are tight framelets� That is

X��� �
n
Lk���p�q�L

k � �j� 	 � � p � L� �� q � �� �� �p� q� �� ��� ��� k� j � Z
o

is a tight frame system of L��R�� The framelet L�p�q is either symmetric or anti�symmetric� Hence�
the symmetric boundary extensions can be imposed�

Before we present examples for L � �� �� �� and �� we will brie�y explain why the method for
even L in 
� cannot be applied for the case with odd L� In fact� the design of tight frame systems
in 
� starts from the existing piecewise linear tight frame

�� �
�

�

�� �� �� �� �

p
�

�

�� ����� �� �

�

�

����� � ����

as reported in 
��� For any even L� Lm� is then decomposed as the sum of �� and its double shifted
versions while Lm� is then decomposed as the sum of �� and its double shifted versions� For instance�
for L � �� we have
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Clearly� if L is an odd number� we do not have such a decomposition� We further point out that
for even L� the number of high�pass �lters for the tight frame system designed in 
� is �L

� � ��
The number of high�pass �lters for the tight frame system designed in the current paper is �L� ��
Moreover� we will see in the next section that the symmetric boundary extension for even L and odd
L are completely di�erent�

Example �� L � �� The low�pass �lter m� and the three high�pass �lters m��m��m� are m� �
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�� �� �� m� �
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�� ����� m� �
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�� ����� and m� �

�
	 
����� �� respectively� Note that m� � m��

we can design a tight wavelet frame system with only two high�pass �lters� This new system has a
low�pass �lter �� � m�� �� �

p
�m�� �� � m� as shown in �����

Example �� L � �� The low�pass �lter m� and the �ve high�pass �lters m��m��m��m	�m
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Example �� L � �� The low�pass �lter m� and the seven high�pass �lters mi� � � i � �� are
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Note that the tight framelet frame designed in ��	 is �� � �
� 
�� �� �� �� �� �� �

p
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�� �� �� ����� �� �

�
� 
��� ����� ����� �� � �

� 
�� �� �������� �	 �
p
�
� 
�� ����� �� �� and �
 � �

� 
��� �� ����� �� Again
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p
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��� Analysis of the Algorithms

Let m�� m�� � � � mN be the low and high pass �lters of a tight framelet system given in the previous
section with m� being the low�pass �lter and m� being the high�pass �lter de�ned in ���� for a �xed
L� The high resolution image reconstruction without displacement error is essentially to solve v
when m� �v is given� We describe our algorithms here in the Fourier domain for the one dimensional
case� The matrix form of the algorithms in two dimensional case is given in the next section� In the
Fourier domain� the problem becomes one of �nding bv when the function �m� � v � bm�bv is given�

Our tight frame iterative algorithm starts from

NX
i��

bmi�	�bmi�	� � ��

��



Suppose that at step n� we have the nth approximation bvn� Then
NX
i��

bmi bmibvn � bvn� ����

Assume that there is no displacement error� Since ��bv � �m� � v is available� we replace bm�bvn in ����
by �m� � v �i�e� ��bv� to improve the approximation� By this� we de�ne

bvn�� � cm��m� � v �
NX
i��

bmicmibvn� ����

For the case with displacement errors� the observed image is obtained from the true image v by
passing v through the �lter m����m�� see ����� Hence we have �bm��	����bm��	��bv instead of bm�bv�
Noting that

cm��	��cm��	� � ��cm��	�� ��bm��	�� �

NX
i��

bmi�	�bmi�	� � ��

and the fact that �bm��	� � ��bm��	��bv is available� we obtain the following modi�ed algorithm

bvn�� � bm���bm� � ��bm��bv � ��bm�bvn� � NX
i��

bmi bmibvn� ����

Essentially� this algorithm uses bm�bvn to estimate the displacement error bm�bv in �bm����bm��bv which
is the available data� The term �bm� � ��bm��bv � ��bm�bvn can be viewed as the approximation of the
observed image without displacement errors� By this� we reduce the problem of reconstruction of
high�resolution image with the displacement errors to that of the one with no displacement errors�
This allows us to use the set of �lters derived from the case with no displacement errors� Those
�lters are symmetric and independent of ��

Proposition �� Let m�� m�� � � � mN be the low and high pass �lters of a tight framelet system
derived from the unitary extension principle with m� and m� being the �lters de�ned in ���� for
a �xed L� Then� the sequence bvn de�ned in ���� converges to bv in L�
��� � for any arbitrarybv� � L�
��� ��
Proof� For an arbitrary bv� � L�
��� �� applying ����� we have

bvn � bv �

�
NX
i��

bmi bmi � ��bm� bm�

�n

�bv� � bv��
Since

PN
i�� bmi�	�bmi�	� is a real number� ��bm��	�bm��	� is a pure imaginary number� and j�j � ����

we then have� for every 	 � 
��� ��

j
NX
i��

bmi�	�bmi�	�� ��bm��	�bm��	��j� � �

NX
i��

bmi�	�bmi�	��
� � ���jbm��	�j�jbm��	�j�

�
NX
i��

bmi�	� bmi�	� � ��

��



Furthermore� since

j
NX
i��

bmi�	� bmi�	�� ��bm��	�bm��	��j�

only equals to � at �nitely many points� the inequality

j
NX
i��

bmi�	�bmi�	�� ��bm��	�bm��	��j� � �

holds for 	 � 
��� � a�e�� Hence��
NX
i��

bmi bmi � ��bm� bm�

�n

�bv� � bv�
converges to zero for almost every 	 � 
��� �� By the Dominated convergence theorem� bvn converges
to bv in L��norm�

When the observed image contains noise� then vn has noise brought in from the previous iteration�
One then has to apply a denoising procedure at each iteration� Here we consider two di�erent
approaches� The �rst one is similar to the denoising procedure given in 
�� The idea is to decompose
the high frequency components bmibvn� i � �� � � � N via the standard tight framelet decomposition
algorithm� This gives a framelet packet decomposition of vn� Then� applying a framelet denoising
algorithm to this decomposition of each bmibvn� i � �� � � � � N and reconstructing bmibvn� i � �� � � � N
back via the standard reconstruction algorithm leads to a denoising procedure for bmibvn� i � �� � � � � N �
The whole denoising procedure is implemented in space �or time� domain instead of Fourier domain�
The detailed algorithm is given in Algorithm � in the next section�

Another approach is to apply standard Donoho orthonormal wavelet denoising scheme on each
vn before it is used to obtain the next iteration� Although our numerical simulation shows that the
denoising scheme mentioned in the last paragraph gives a better performance� this new iteration
can be proved to be convergent if the soft threshold �see ���� and ���� for the de�nitions of soft
threshold� is used in the denoising scheme� Indeed� this is a direct corollary of Theorem ��� in

��� For it was proven in 
�� that given a converging iteration that solves an inverse problem� the
iteration will still be convergent if one adds a soft threshold denoising scheme based on an orthonormal
system at each iteration under the assumption that the underlying solution can be represented by
the orthonormal system sparsely� Since images can be modeled as piecewise smooth functions that
can be sparsely represented by orthonormal wavelet systems� and since our iteration de�ned in ����
converges� Theorem ��� of 
�� can be applied to conclude that this new algorithm converges� In fact�
Theorem ��� of 
�� was stated in a more general setting and the interested reader should consult

�� for the details� The details of implementation of this algorithm is given in Algorithm ��

� Matrix Form

Setting � � � in ���� yields

�X
q��

L��X
p��

jbm�p�q�	�j� � �� ����

��



For any signal u� we have
�X

q��

L��X
p��

jbm�p�q�	�j�bu�	� � bu�	��
In the time domain� the above identity is equivalent to

�X
q��

L��X
p��

�m�p�q �m�p�q � u��n� � u�n� n � Z� ����

where m�p�q�k� � m�p�q��k� for all k� Our purpose is to construct� under certain symmetric
boundary conditions� N �N matrices Tk and Tk� k � �� � � � � �L� �� such that

�X
q��

L��X
p��

T�p�qT�p�qu � u ����

for any vector u� This is equivalent to

�X
q��

L��X
p��

T�p�qT�p�q � I ����

To construct the matrices Tk and Tk� for k � �� � � � � �L � �� we consider two separate cases	 L is
even and L is odd� The detailed formulation of the matrices Tk and Tk is given in 
���

��� L is even

If L is even� the N �N matrices

Tk �

�
Toeplitz�a�b� � PseudoHankel�b�a�� when k � �p� q and p� q is even�
Toeplitz�a�b� � PseudoHankel��b��a�� when k � �p� q and p� q is odd�

for all k � �� � � � � �L� �� and

a � 
mk���� � � � �mk��L���� �� � � � � �t and b � 
mk���� � � � �mk�L���� �� � � � � �t�

Similarly� the N �N matrices

Tk � Toeplitz�a�b� � PseudoHankel�b�a�

for all k � �� � � � � �L� � with

a � 
mk���� � � � �mk��L���� �� � � � � �t and b � 
mk���� � � � �mk�L���� �� � � � � �t�

��� L is odd

If L is odd� the N �N matrices

Tk �

�������
Toeplitz�a�b� � PseudoHankel�b��� � Hankel���a��

when k � �p� q and p� q is even�
Toeplitz�a�b� � PseudoHankel��b��� � Hankel����a��

when k � �p� q and p� q is odd�

��



for all k � �� � � � � �L� � with

a � 
mk���� � � � �mk���L� ������ �� � � � � �t and b � 
mk���� � � � �mk��L� ������ �� � � � � �t�
Similarly� the N �N matrices

Tk � Toeplitz�a�b� � PseudoHankel�b��� � Hankel���a��

for all k � �� � � � � �L� � with

a � 
mk���� � � � �mk���L� ������ �� � � � � �t and b � 
mk���� � � � �mk��L� ������ �� � � � � �t�

� Algorithms

For any number L � �� the M� � M� matrices Tk and Tk in ���� are denoted by Tx
k and Tx

k�
respectively� the M� �M� matrices Tk and Tk in ���� are denoted by Ty

k and Ty
k� respectively� We

have
�L��X
k��

Tx
kT

x
k � IM�

and

�L��X
k��

T
y
kT

y
k � IM�

�

This leads to

�L��X
p�q��

Tp�qTp�q � IM��M�
� ����

where Tp�q � T
y
q 	Tx

p and Tp�q � Ty
q 	Tx

p � Obviously� T��� � H������
Recalling ����� we have

Hx��x������ � Tx
� � ��x�����T

x
� and Hy��y������ � T

y
� � ��y�����T

y
��

Therefore� the blurring matrix with displacement errors� i�e� H��x� �y� in ���� can be expressed as
the sum of the blurring with no displacement H����� together with the matrices T���� T���� T����
More precisely�

H�����
x
����� � �

y
�����

� � T��� � ��x�����T��� � ��y�����T��� � ��x������
y
�����

T���� ����

By de�nition ����
PL��

����

PL��
����

D����� � IM��M�
� Hence we get

H��x� �y� � T��� � �S��x�T��� � �S��y�T��� � �S��xy�T��� ����

where �
xy � 
�x����� � �

y
�����

L���������
and S��� �

PL��
����

PL��
����

������ �D����� �
Multiplying f to both sides of ���� leads to

H��x� �y�f � T���f � �S��x�T���f � �S��y�T���f � �S��xy�T���f �

This equation says that the observed high�resolution image g � H��x� �y�f is the sum of T���f �which
equals to H�����f � the observed high�resolution image without any displacement errors�� and three
high�frequency images� Conversely� the observed image in the case with no displacement errors can
be represented by the observed images with displacement errors	

H�����f � T���f � H��x� �y�f � 
�S��x�T���f � �S��y�T���f � �S��xy�T���f � ����

Thus with the matrices T���� T���� and T���� we can always approximate H�����f independent of
the displacement errors� In other words� unlike the work in 
�� the tight system we used is �xed and
can be used for all displacement errors�

Two algorithms will be proposed in the following subsections�

��



��� Algorithm �

This algorithm is essentially the same as the one proposed in 
��

Algorithm ��


� Choose an initial guess f��

�� Iterate on n until convergence�

a� compute all framelet coe�cients Tp�qfn for �p� q� �� ��� �� for p� q � �� � � � � �L� ��

b� estimate the observed image eg according to �����

eg � g � ��S��x�T��� � �S��y�T��� � �S��xy�T���� fn�

c� denoise framelet coe�cients Tp�qfn� �p� q� �� ��� ��� by the denoising operator D we will
de�ne it later��

d� reconstruct an image fn�� from the estimated observed image eg and denoised wavelet
coe�cients D�Tp�qfn�� i�e�

fn�� � T���eg �

�L��X
p�q��

�p�q� �������

Tp�qD�Tp�qfn�� ����

One of the major points of our algorithm is that Donoho�s denoising operator D can be built
into the iteration procedure� Although orthogonal and bi�orthogonal wavelets can be used as the
denoising operator D� we insist in using the constructed tight framelets with L � � for Algorithm ��
since it is simple and e�cient� To this end� the matrices Wp�q and Wp�q correspond to the matrices
Tp�q and Tp�q in ���� with L � �� The denoising operator for two�dimensional images can be simply
written as

D�f� � �W����
Q�W����

Qf �

Q��X
q��

�W����
q

�X
r�s��

�r�s��������

Wr�sT��Wr�sW
q
���f�� ����

where Q is the number of levels used in the decomposition� The operator T� is the thresholding
operator de�ned in 
��� ��� More precisely� for a given �� let

T���x�� � � � � xl� � � � �t� � �t��x��� � � � � t��xl�� � � � �
t� ����

where the thresholding function t� is either �i� t��x� � x�jxj	�� referred to as the hard threshold� or

�ii� t��x� � sgn�x�max�jxj � �� ��� the soft threshold� A typical choice for � is � � �
p

� log�M�M��
where � is the variance of the Gaussian noise in the signal f estimated numerically by the method
given in 
��� We use the hard threshold in Algorithm ��

The computational complexity of each iteration in Algorithm � is O�M�M� log�M�M���� This
complexity is also proportional to �L���� the number of matrices Tp�q� �p� q� �� ��� ��� Therefore� to
reduce the computational complexity at each iteration� one way is to construct a tight frame system
of L��R� with the smallest number of tight framelets as possible� Of course� Lm� and Lm� must be
the low�pass �lter and one of the high�pass �lters associated with this tight frame system�

��



��� Algorithm �

This algorithm is new and has not been proposed before�

Algorithm ��


� Choose an initial guess f��

�� Iterate on n until convergence�

a� denoise the image fn by the denoising operator D de�ned in ����� the resulting image is

efn � D�fn��

b� estimate the observed image eg according to �����

eg � g � ��S��x�T��� � �S��y�T��� � �S��xy�T����efn�
c� reconstruct an image fn�� from the estimated observed image eg and efn� i�e�

fn�� � T���eg � �I�T���T����efn�
As indicated at the end of Section �� Algorithm � will converge if orthogonal wavelets are used

in the denoising operator D� However� here we use linear tight framelets instead of the orthogonal
wavelets in the denoising operator D because the results with tight framelets are much better than
that with orthogonal wavelets� We use the soft threshold in Algorithm ��

The computational complexity of each iteration in Algorithm � is still O�M�M� log�M�M����
Unlike Algorithm �� this complexity is independent of the number of matrices Tp�q� �p� q� �� ��� ���
Therefore� comparing with Algorithm �� this new algorithm signi�cantly reduces the computational
cost�

� Numerical Experiments

In this section� we implement our tight framelet based high�resolution image reconstruction algorithm
developed in previous sections� We evaluate our method using the peak signal�to�noise ratio �PSNR�
which compares the reconstructed image fc with the original image f � It is de�ned by PSNR �
�� log��

�

�M�M�

kf�fck��
� where the size of the restored images is M� �M�� We use the �Bridge�� �Boat��

and �Baboon� images of size ��� � ��� as the original images in our numerical tests� see Figure ��
We use Q � � in ���� and stop the iteration process when the reconstructed HR image achieves the
highest PSNR value� The maximum number of iteration is set to ����

For any L � L sensor array� the displacement errors matrices �
x and �

y are generated by the
following three MATLAB commands

rand��seed�� ����� �x � ���� � �rand�L�� ����� �y � ���� � �rand�L�� �����

The L� L sensor array with displacement errors �x and �
y produces L��s LR images�

For � � �� � � �� � � �� and � � � sensor arrays� the tight framelets we used are designed in
Examples �� �� �� and �� respectively� Figures ��� give the PSNR values of the reconstructed images
at each iteration for the �Boat� image �left column�� the �Bridge� image �middle column�� and
the �Baboon� image �right column� for sensor arrays of di�erent sizes by using Algorithm � and
Algorithm �� respectively� Figures ��� depict the reconstructed HR images with noise at SNR � ��

��



Figure �	 Original �Boat� image �left�� original �Bridge� image �middle�� original �Baboon� image
�right��

dB� We see that we can obtain quite good images even for L as large as �� In terms of PSNR values�
Algorithm � is better than Algorithm ��

For comparison between the wavelet �or framelet� approach with Tikhonov approach� we refer the
readers to 
�� �� �� where the numerical results have consistently shown that the wavelet approach
always outperforms the Tikhonov approach�

� Conclusions

In this paper� we continue on our early work in 
�� First� we designed a tight wavelet frame system
with Lm� as its low�pass �lter and Lm� as one of its high�pass �lters for any integer L � ��
The �lters are symmetric or antisymmetric so that the proposed tight frame algorithms work for
symmetric boundary conditions� Secondly� an analysis of the convergence of the algorithm in 
� is
given� It is shown that the algorithm converges when there is no noise in the given data� When the
data has noise� a denoising scheme should be built in to remove noise� The algorithm can be proven
to converge for some denoising scheme� e�g� the one given in Algorithm �� In our future works�
we will construct a tight frame system which has as small number of tight framelets as possible in
order to reduce the computational complexity of our proposed Algorithm �� We will also develop an
e�cient denoising scheme� since it is critical for getting good reconstructed images and proving the
convergence of the algorithm�
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Figure �	 PSNR values at each iteration for �Boat� �left�� �Bridge� �middle� and �Baboon� �right�
images with �� �� � � �� �� �� and �� � �from top to bottom� using Algorithm �� Solid� dashdot�
and dotted lines denote the case where the observed HR images are corrupted with Gaussian white
noise at noise level SNR � ��� ��� and �� respectively�
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Figure �	 From top to bottom� the ��� ���th LR images� the observed HR images� and the recon�
structed HR images for � � � sensor array� The reconstructed HR �Boat� image� �Bridge� image�
and �Baboon� image by using Algorithm � �the third row� have PSNR � ����� dB� ����� dB� and
����� dB respectively� The reconstructed HR �Boat� image� �Bridge� image� and �Baboon� image
by using Algorithm � �the forth row� have PSNR � ����� dB� ����� dB� and ����� dB respectively�
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