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Abstract. This paper is concerned with the construction of circulant preconditioners for Toeplitz
systems arising from a piecewise continuous generating function with sign changes.

If the generating function is given, we prove that for any ε > 0, only O(logN) eigenvalues of our
preconditioned Toeplitz systems of size N×N are not contained in [−1−ε,−1+ε]∪ [1−ε, 1+ε]. The
result can be modified for trigonometric preconditioners. We also suggest circulant preconditioners
for the case that the generating function is not explicitly known and show that only O(logN)
absolute values of the eigenvalues of the preconditioned Toeplitz systems are not contained in a
positive interval on the real axis.

Using the above results, we conclude that the preconditioned minimal residual method requires
only O(N log2 N) arithmetical operations to achieve a solution of prescribed precision if the spectral
condition numbers of the Toeplitz systems increase at most polynomial in N . We present various
numerical tests.
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1. Introduction. Let L2π be the space of 2π-periodic Lebesgue integrable real-
valued functions and let C2π be the subspace of 2π-periodic real-valued continuous
functions with norm

‖f‖∞ := max
t∈[−π,π]

|f(t)|(f ∈ C2π).

The Fourier coefficients of f ∈ L2π are given by

ak = ak(f) :=
1

2π

∫ π

−π

f(t)e−ikt dt(k ∈ Z),

and the sequence {AN (f)}∞N=1 of (N,N)-Toeplitz matrices generated by f is defined
by

AN = AN (f) := (aj−k(f))N−1
j,k=0.

Since f ∈ L2π is real-valued, the matrices AN (f) are Hermitian.
We are interested in the iterative solution of Toeplitz systems

AN (f) x = b,(1.1)
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where the generating function f ∈ L2π. To be more precise, we are looking for good
preconditioning strategies so that Krylov space methods applied to the preconditioned
system converge in a small number of iteration steps. Note that by the Toeplitz
structure of AN each iteration step requires only O(N logN) arithmetical operations
by using fast Fourier transforms.

Preconditioning techniques for Toeplitz systems have been well studied in the
past 10 years. However, most of the papers in this area are concerned with the case
where the generating function f is either positive or nonnegative; see, for instance,
[5, 3, 20, 7, 17, 10] and the references therein. In this paper, we consider f that has
sign changes. The method we propose here will also work for generating functions
that are positive or nonnegative.

Up to now iterative methods for Toeplitz systems with generating functions having
different signs were only considered in [20, 19, 22, 24] and in connection with non-
Hermitian systems in [8, 6]. In [8], we have constructed circulant preconditioners for
non-Hermitian Toeplitz matrices with known generating function of the form

f = p h,

where p is an arbitrary trigonometric polynomial and h is a function from the Wiener
class with |h| > 0. We proved that the preconditioned matrices have singular values
properly clustered at 1. Then, if the spectral condition number of AN (f) fulfills
κ2(AN (f)) = O(Nα), the conjugate gradient (CG) method applied to the normal
equation requires only O(logN) iteration steps to produce a solution of fixed precision.
However, in general, nothing can be said about the eigenvalues of the preconditioned
matrix.

In this paper, we consider real-valued functions f ∈ L2π of the form

f = psh,(1.2)

where

ps(t) :=

μ∏
j=1

(2 − 2 cos(t− tj))
sj , s :=

μ∑
j=1

sj(1.3)

is a trigonometric polynomial with a finite number of zeros tj ∈ [−π, π) (j = 1, . . . , μ)
of even order 2sj and where h ∈ L2π is a piecewise continuous function with simple
discontinuities at ξj (j = 1, . . . , ν), i.e., there exist h(ξj±0) and h(ξj+0)−h(ξj−0) =
αj �= 0. For simplicity let h(ξj) = (h(ξj − 0) + h(ξj + 0))/2. Further, we assume that

{|h(t)| : t ∈ [−π, π); |h(t)| > 0} ⊆ [h−, h+],(1.4)

where 0 < h− ≤ h+ < ∞. In particular, we are interested in the Heaviside function
h.

A similar setting was also considered in [20]. Serra Capizzano suggested the
application of band-Toeplitz preconditioners AN (ps) in combination with CG applied
to the normal equation. He proved, beyond a more general result which cannot directly
be used for preconditioning, that at most o(N) eigenvalues of the preconditioned
matrix AN (ps)

−1AN (f) have absolute values not contained in a positive interval on
the real axis.

The same author suggested in [19] a preconditioning method based on the Sherman–
Morrison–Woodbery formula and some kind of normal equation for generating func-
tions with zeros of odd order.
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A result with o(N) outliers was also obtained in [23], where the application of
preconditioned GMRES was examined.

In the following, we construct circulant preconditioners for the minimal residual
method (MINRES). Note that preconditioned MINRES avoids the transformation of
the original system to the normal equation but requires Hermitian positive definite
preconditioners. Then, the preconditioned matrices are again Hermitian, so that
the absolute values of their eigenvalues coincide with their singular values. If the
generating function is given, we prove that for any ε > 0, only O(logN) singular
values of the preconditioned matrices are not contained in [1 − ε, 1 + ε]. We also
construct circulant preconditioners for the case that the generating function of the
Toeplitz matrices is not explicitly known. For this, we use positive reproducing kernels
with special properties previously applied by the authors in [17, 10] and show that
O(logN) singular values of the preconditioned matrices are not contained in a positive
interval on the real axis. Then, if in addition κ2(AN (f)) = O(Nα), preconditioned
MINRES converges in at most O(logN) iteration steps. In summary, the proposed
algorithm requires only O(N log2 N) arithmetical operations.

Note that the theoretical verification of the above assumption on the condition
number of AN (f) is not straightforward. See [4] for examples of banded indefinite
Toeplitz matrices with exponentially (or even faster) growing condition numbers.

This paper is organized as follows. In section 2, we introduce circulant precondi-
tioners for (1.1) under the assumption that the generating function of the sequence
of Toeplitz matrices is known and prove clustering results for the eigenvalues of the
preconditioned matrices. Section 3 deals with the construction of preconditioners if
the generating function of the Toeplitz matrices is not explicitly known. In section 4,
we modify the results of section 2 with respect to trigonometric preconditioners. The
convergence of MINRES applied to our preconditioned Toeplitz systems is considered
in section 5. Finally, we present numerical results in section 6.

2. Circulant preconditioners involving generating functions. First we
introduce some basic notation. By RN (M) we denote arbitrary (N,N)-matrices of
rank at most M . Let MN (g) be the circulant (N,N)-matrix

MN (g) := FN diag

(
g

(
2πl

N

))N−1

l=0

F ∗
N ,

where FN denotes the Nth Fourier matrix

FN :=
1√
N

(
e−2πijk/N

)N−1

j,k=0

and where F ∗ is the transposed complex conjugate matrix of F . For a trigonometric
polynomial q(t) :=

∑n2

k=−n1
qke

ikt, the matrices AN (q) and MN (q) are related by

AN (q) = MN (q) + RN (n1 + n2)(2.1)

(see [15]). For a function g with a finite number of zeros we define the set IN (g) by

IN (g) :=

{
l = 0, . . . , N − 1 : g

(
2πl

N

)
�= 0

}

and the points xN,l(g) (l = 0, . . . , N − 1) by

xN,l(g) :=

{
2lπ
N if l ∈ IN (g) ,

2l̃π
N otherwise,
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where l̃ ∈ {0, . . . , N − 1} is the next higher index to l so that l̃ ∈ IN (g). For N large
enough we can simply choose l̃ = l+1 mod N . By MN,g(f) we denote the circulant
matrix

MN,g(f) := FN diag (f(xN,l(g)))
N−1
l=0 F ∗

N .(2.2)

If g has m zeros, then we have by construction that

MN (f) = MN,g(f) + RN (m).(2.3)

Now assume that the sequence {AN (f)}∞N=1 of nonsingular Toeplitz matrices
is generated by a known piecewise continuous function f ∈ L2π of the form (1.2)–
(1.4). Then we suggest the Hermitian positive definite circulant matrix MN,f (|f |) as
preconditioner for MINRES.

We examine the distribution of the eigenvalues of MN,f (|f |)− 1
2 AN (f)MN,f (|f |)− 1

2 .
The following theorem is Lemma 10 of [26] written with respect to our notation.
Theorem 2.1. Let h ∈ L2π be a piecewise continuous function having only simple

discontinuities at ξj ∈ [−π, π) (j = 1, . . . , ν). By FN we denote the Fejér kernel

FN (t) :=

N−1∑
k=−(N−1)

(
1 −

∣∣∣∣ kN
∣∣∣∣
)

eikt = 1 + 2

N−1∑
k=1

(
1 − k

N

)
cos kt(2.4)

=

{
1
N

(
sin
(
Nt
2

)
/ sin

(
t
2

))2
, t �= 0,

1
N , t = 0,

(2.5)

and by FN ∗ h we denote the cyclic convolution of FN and h. Then, for any ε > 0,
there exist constants 0 < c1 ≤ c2 < ∞ independent of N so that the number ν(ε; AN )
of eigenvalues of AN (h)−MN (FN∗h) with absolute value exceeding ε can be estimated
by

c1 log (N) ≤ ν(ε; AN ) ≤ c2 log (N).

In other words, we have by Theorem 2.1 that

AN (h) = MN (FN ∗ h) + V N + UN ,(2.6)

where V N is a matrix of spectral norm ≤ ε and where

c1 logN ≤ rank (UN ) ≤ c2 logN.

Using Theorem 2.1, we can prove the following lemma.
Lemma 2.2. Let f = psh ∈ L2π be given by (1.2)–(1.4). Then, for any ε > 0 and

sufficiently large N , the number of singular values of MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2

which are not contained in the interval [1 − ε, 1 + ε] is O(logN).
Proof. By (2.6) and since the eigenvalues of MN,f (|h|) are restricted from below

by h−, it remains to show that for any ε > 0 and sufficiently large N , except for
O(logN) eigenvalues, all eigenvalues of MN,f (|h|)−1MN (FN ∗h) have absolute values
in [1 − ε, 1 + ε]. Indeed we will prove that there are only O(1) outliers.

For this we mainly follow the lines of proof of Gibb’s phenomenon. Without loss
of generality we assume that h ∈ L2π has only one jump at ξ1 = 0 of height α1.
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First we examine FN ∗ g, where g is given by

g(x) :=

⎧⎪⎨
⎪⎩

1
2 (π − x), x ∈ (0, π),
1
2 (−x− π), x ∈ (−π, 0),

0, x = 0.

By (2.4) and since g has Fourier series

g(x) ∼
∞∑
k=1

1

k
sin kx,

we obtain

∫ x

0

FN (t) dt = x + 2

N−1∑
k=1

(
1

k
− 1

N

)
sin kx = x + 2 (FN ∗ g)(x),

and further by (2.5)

(FN ∗ g)(x) =
1

2N

∫ x

0

(
sin Nt

2

sin t
2

)2

dt− x

2

=
1

2N

∫ x

0

(
sin Nt

2
t
2

)2

dt +
1

2N

∫ x

0

(
1

(sin t
2 )2

− 1

( t
2 )2

)(
sin

Nt

2

)2

dt− x

2

=

∫ Nx
2

0

(
sin t

t

)2

dt + O(N−1) − x

2
,

and by partial integration and definition of g

(FN ∗ g)(x) − g(x) =
−(sin Nx

2 )2

Nx
2

+ si (Nx) − π

2
+ O(N−1) (x ∈ (0, π)),

where si (y) :=
∫ y

0
sin t
t dt. We are interested in the behavior of

(FN ∗ g)
(

2πl

N

)
− g

(
2πl

N

)
= si (2πl) − π

2
+ O(N−1)

(
l = 0, . . . ,

⌈
N

2

⌉
− 1

)
.

Here �x� denotes the smallest integer ≥ x. It is well known that limx→∞ si (x) = π
2 .

Thus, if l = l(N) → ∞ for N → ∞, then, for any ε > 0, there exists N0 = N0(ε) so
that ∣∣∣∣(FN ∗ g)

(
2πl

N

)
− g

(
2πl

N

)∣∣∣∣ < πh−
2α1

ε for all N ≥ N0.(2.7)

The same holds if we approach 0 from the left, i.e., if we consider 2πl/N for l =⌈
N
2

⌉
, . . . , N − 1.
Next we have by definition of g and h that

h̃(x) := h(x) − α1

π
g(x)
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is a continuous function. Since FN is a reproducing kernel, for any ε > 0, there exists
Ñ0 = Ñ0(ε) so that for all l ∈ {0, . . . , N − 1}∣∣∣∣(FN ∗ h̃)

(
2πl

N

)
− h̃

(
2πl

N

)∣∣∣∣ < ε

2
h− for all N ≥ Ñ0.(2.8)

Assume that l = l(N) → ∞ for N → ∞ (l ∈ {0, . . . , �N
2 � − 1}). Then we obtain

by (2.7) and (2.8) that for any ε > 0 there exists N(ε) = max (N0, Ñ0) so that∣∣∣∣(FN ∗ h)

(
2πl

N

)
− h

(
2πl

N

)∣∣∣∣ ≤
∣∣∣∣(FN ∗ h̃)

(
2πl

N

)
− h̃

(
2πl

N

)∣∣∣∣
+

α1

π

∣∣∣∣(FN ∗ g)
(

2πl

N

)
− g

(
2πl

N

)∣∣∣∣ ,∣∣∣∣(FN ∗ h)

(
2πl

N

)
− h

(
2πl

N

)∣∣∣∣ ≤ ε h− for all N ≥ N(ε),

and consequently, since |h ( 2πl
N

) | ≥ h− (l ∈ IN (f)),

1 − ε ≤
∣∣(FN ∗ h)

(
2πl
N

)∣∣∣∣h ( 2πl
N

)∣∣ ≤ 1 + ε (l ∈ IN (f)).(2.9)

Let m ≤ μ + ν denote the number of zeros of f which are equal to one of the points
2πl/N (l = 0, . . . , N − 1). Then the set{∣∣(FN ∗ h)

(
2πl
N

)∣∣∣∣h ( 2πl
N

)∣∣ : l ∈ IN (f)

}

contains at least N −m absolute values of eigenvalues of MN,f (|h|)−1MN (FN ∗ h)
and we conclude by (2.9) that except for O(1) eigenvalues and sufficiently large N , all
eigenvalues of MN,f (|h|)−1MN (FN ∗h) have absolute values contained in [1−ε, 1+ε].
This completes the proof.

Remark 2.3. In a similar way as above we can prove that for any ε > 0 and N
sufficiently large, the number of eigenvalues of AN (h) with absolute values not in the
interval [h− − ε, h+] is O(logN).

Note that the property that at most o(N) eigenvalues of AN (h) have absolute
values not contained in [h− − ε, h+] follows simply from the fact that the singular
values of AN (h) are distributed as |h| [14, 23].

Theorem 2.4. Let f = psh ∈ L2π be given by (1.2)–(1.4). Then, for any ε > 0
and sufficiently large N , except for O(logN) singular values, all singular values of

MN,f (|f |)− 1
2 AN (f)MN,f (|f |)− 1

2

are contained in [1 − ε, 1 + ε].
Proof. The polynomial ps in (1.3) can be rewritten as

ps = pp̄,

where

p(t) :=

μ∏
j=1

(1 − e−itj eit)sj ,

μ∑
j=1

sj = s,
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and p̄(t) is the complex conjugate of p(t). By straightforward computation it is easy
to check that

AN (f) = AN (ps h) = AN (p h p̄)

= AN (p h) AN (p̄) + Rc
N (s)

= AN (p) AN (h) AN (p̄) + Rr
N (s) AN (p̄) + Rc

N (s)

= AN (p) AN (h) AN (p̄) + RN (2s),(2.10)

where only the first s columns (rows) of R
c (r)
N (s) are nonzero columns (rows).

Since |f | = p p̄ |h| the eigenvalues of MN,f (|f |)−1AN (f) coincide with the eigen-
values of

BN (f) := MN,f (|h|)−1/2 MN,f (p)−1 AN (f)MN,f (p̄)−1 MN,f (|h|)−1/2.(2.11)

Now we obtain by (2.10), (2.1), and (2.3) that

BN (f) = MN,f (|h|)− 1
2 MN,f (p)−1AN (p)AN (h)AN (p̄)MN,f (p̄)−1MN,f (|h|)− 1

2

+RN (2s)

=MN,f (|h|)− 1
2 MN,f (p)−1(MN,f (p) + RN (s + m))AN (h)

· (MN,f (p̄) + RN (s + m))MN,f (p̄)−1MN,f (|h|)− 1
2 + RN (2s)

= MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2 + RN (4s + 2m).(2.12)

By Lemma 2.2, for any ε > 0 and N sufficiently large, except for O(logN) singular

values, all singular values of MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2 are contained in [1 −
ε, 1 + ε]. Now the assertion follows by (2.12) and Weyl’s interlacing theorem [13,
p. 184].

3. Circulant preconditioners involving positive kernels. In many appli-
cations we know only the entries ak(f) of the Toeplitz matrices AN (f) and not the
generating function itself. In this case, we use even positive reproducing kernels
KN ∈ C2π. These are trigonometric polynomials of the form

KN (t) := cN,0 + 2

N−1∑
k=1

cN,k cos kt, cN,k = ak(KN ) ∈ R

satisfying KN ≥ 0,

1

2π

∫ π

−π

KN (t) dt = 1,(3.1)

and the reproducing property

lim
N→∞

‖f −KN ∗ f‖∞ = 0 for all f ∈ C2π.

Since

(KN ∗ f)(x) =
1

2π

∫ π

−π

f(t)KN (x− t) dt =

N−1∑
k=−(N−1)

ak(f) cN,k eikx,
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the cyclic convolution of KN and f is determined by the first N Fourier coefficients of
f . As a preconditioner which can be constructed from the entries of AN (f) without
explicit knowledge of f we suggest the circulant matrix MN,KN∗f (|KN ∗ f |).

In order to obtain a suitable distribution of the eigenvalues of the preconditioned
matrices, we need kernels with a special property which is related to the order

σ := max
j=1,... ,μ

sj

of the zeros of ps.
The generalized Jackson kernels Jm,N of degree ≤ N − 1 are defined by

Km,N (t) = Jm,N (t) := λm,N

(
sin(nt/2)

sin(t/2)

)2m

(m ∈ N),(3.2)

where n := �N−1
m � + 1 and where λm,N is determined by (3.1). Here �t� denotes the

largest integer ≤ t. In particular, we have that

λm,N ∼ N1−2m,

i.e., there exist positive constants c1, c2 so that c1 N
1−2m ≤ λm,N ≤ c2 N

1−2m. See
[11, pp. 203–204]. A possibility for the construction of the Fourier coefficients of Jm,N

is prescribed in [10].
The B-spline kernels Bm,N of degree ≤ N − 1 are defined by

Km,N (t) = Bm,N (t) :=
N

m

1

M2m(0)

∑
r∈Z

(
sinc

(
N

m

(
t + 2πr

2

)))2m

,(3.3)

where Mm denotes the centered cardinal B-spline of order m and

sinc t :=

{
sin t
t , t �= 0 ,

1, t = 0.

See [17, 9]. Since

Bm,N (t) := 1 +
2

M2m(0)

N−1∑
k=1

M2m

(
mk

N

)
cos kt,

the Fourier coefficients of Bm,N are given by values of centered cardinal B-splines.
Note that J1,N = B1,N is just the Fejér kernel FN .

The above kernels have the following important property.
Theorem 3.1. Let f = psh ∈ L2π be given by (1.2)–(1.4). Assume that for all tj

(j ∈ {1, . . . , μ}) with tj = ξk for some k ∈ {1, . . . , ν} and sgnh(ξk+0) �= sgnh(ξk−0)
there exists a neighborhood [tj − εj , tj + εj ] (εj > 0) of tj so that f is a monotone
function in this neighborhood and moreover f(tj − t) = −f(tj + t) (0 ≤ t ≤ εj). Let
KN = Km,N be given by (3.2) or (3.3), where

m ≥ σ + 1.

Then there exist 0 < α ≤ β < ∞ so that for N → ∞, except for O(1) points, all
points of the set {2πl/N : l ∈ IN (f)} fulfill

1

β
≤ |(KN ∗ f)( 2πl

N )|
|f( 2πl

N )| ≤ 1

α
.(3.4)
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Proof. (1) First we consider the upper bound. Since ps and KN are nonnegative,
we obtain

|(KN ∗ f)(x)| ≤ 1

2π

∫ π

−π

|h(t)| ps(t)KN (x− t) dt

≤ h+
1

2π

∫ π

−π

ps(t)KN (x− t) dt = h+ (KN ∗ ps)(x).

In [17, 10], we proved that m ≥ σ + 1 implies that for all x ∈ IN (ps) ⊇ IN (f), there
exists a constant 0 < c < ∞ so that

(KN ∗ ps)(x)

ps(x)
≤ c.

Thus, since |h(x)| ≥ h− for (x ∈ IN (f)), we obtain

|(KN ∗ f)(x)|
|f(x)| ≤ h+

h−
(KN ∗ ps)(x)

ps(x)
≤ h+

h−
c (x ∈ IN (f)).

(2) Next we deal with the lower bound.
(2.1) Let x ∈ IN (f) be not in the neighborhood of tj (j = 1, . . . , μ), i.e., there

exist bj > 0 independent of N so that |x − tj | ≥ bj > 0 (j = 1, . . . , μ). Then
|f(x)| ≥ c > 0 for all x ∈ IN (f). Further, since KN is a reproducing kernel and by
using the same arguments as in the proof of Lemma 2.2 if x is in the neighborhood of
some ξk (k = 1, . . . , ν), we obtain that, for any ε > 0 there exists N(ε), so that except
for at most a constant number of points, all considered points x ∈ IN (f) satisfy

|(KN ∗ f)(x) − f(x)| ≤ c ε (N ≥ N(ε)),

and thus

|(KN ∗ f)(x)|
|f(x)| ≥ 1 − c ε

|f(x)| ≥ 1 − ε.

(2.2) It remains to consider the points x = x(N) ∈ IN (f) with limN→∞ x(N) = tj
(j = 1, . . . , μ).

For simplicity we assume that

ps(t) = (2 − 2 cos t)s = (2 sin(t/2))2s,

i.e., ps has only a zero of order 2s at t1 = 0. Let x = x(N) ∈ IN (f) with

lim
N→∞

x(N) = 0.

For any fixed 0 < b < π we obtain

(KN ∗ f)(x) =
1

2π

(∫ b

−b

f(t)KN (x− t) dt +

∫ −b

−π

f(t)KN (x− t) dt

+

∫ π

b

f(t)KN (x− t) dt

)

=
1

2π

(∫ b

−b

f(t)KN (x− t) dt +

∫ π+x

b+x

f(x− t)KN (t) dt

+

∫ π−x

b−x

f(x + t)KN (t) dt

)
,
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and since f is bounded

(KN ∗ f)(x) − 1

2π

∫ b

−b

f(t)KN (x− t) dt ∼
(∫ π+x

b+x

+

∫ π−x

b−x

)
KN (t) dt.

By definition of KN we see that for any fixed 0 < b̃ ≤ π∫ π

b̃

KN (t) dt ≤ const N−2m+1,(3.5)

so that we get for small x (e.g., x < b/2)

(KN ∗ f)(x) =
1

2π

∫ b

−b

f(t)KN (x− t) dt + O(N−2m+1).(3.6)

(2.2.1) Assume that h has no jump at t1 = 0 with sign change. Then there exists
ε > 0 so that h(t) ≥ h− or h(t) ≤ −h− for t ∈ [−ε, ε]. We restrict our attention to the
case h ≥ h−. Since 0 < h− ps(t) ≤ f(t) ≤ h+ ps(t) (t ∈ [−ε, ε]) and ps is monotone
increasing on (0, π), we obtain for x(N) ∈ (0, ε)∩ IN (f) and N sufficiently large that∫ ε

−ε

f(t)

f(x(N))
KN (t− x(N)) dt ≥

∫ ε

x(N)

f(t)

f(x(N))
KN (t− x(N)) dt

≥ h−
h+

∫ ε

x(N)

ps(t)

ps(x(N))
KN (t− x(N)) dt

≥ h−
h+

∫ ε−x(N)

0

ps(t)

ps(x(N))
KN (t) dt ≥ c(3.7)

with a positive constant c independent of N . On the other hand, we have by definition
of ps and by assumption s ≤ m− 1 that f(x(N)) ≥ h− c̃ N−2s ≥ h− c̃ N−2m+2. Then
we obtain by (3.6) with b = ε and (3.7) that for N large enough

(KN ∗ f)(x(N))

f(x(N))
≥ const

with a positive constant const independent of N .
The proof for x(N) ∈ (−ε, 0) ∩ IN (f) follows the same lines.
(2.2.2) Finally, we assume that h has a jump at t1 = 0 with sgnh(0 + 0) �=

sgnh(0 − 0). Without loss of generality let h(0 + 0) > 0. Then, by assumption on f ,
there exists ε1 > 0 so that h(t) = −h(−t) for t ∈ [0, ε1]. Thus,∫ ε1

−ε1

f(t)KN (x− t) dt =

∫ ε1

0

f(t)(KN (t− x) −KN (t + x)) dt.(3.8)

We consider points of the form

y = yk(N) :=
2πm

N γ
k (k ∈ N)

with limN→∞ yk(N) = 0, where γ := mn/N in case of Jackson kernels and γ := 1 in
case of B-spline kernels. Then we have for t ∈ [0, ε1] that

Jm,N (t− y) − Jm,N (t + y) = λm,N

((
sin(nt/2)

sin((t− y)/2)

)2m

−
(

sin(nt/2)

sin((t + y)/2)

)2m
)
,

(3.9)
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and consequently, for sufficiently small ε1 and y, since sin is odd and monotone in-
creasing on (0, π/2) we have that

Jm,N (t− y) − Jm,N (t + y) > 0 for all t ∈ (0, ε1).

Further, by definition of the B-spline kernels

Bm,N (t− y) − Bm,N (t + y) = B0
m,N (t− y) − B0

m,N (t + y) + O(N−2m+1),

where B0
m,N (t) := N

m
1

M2m(0)

(
sinc

(
N
m

t
2

))2m
, and similarly as in (3.9) we see that

B0
m,N (t− y) − B0

m,N (t + y) > 0 for all t ∈ (0, ε1).

By assumption h does not change the sign in (0, ε1). Then we obtain by (3.8), mono-
tonicity of ps in (0, π) and m ≥ s + 1 that∫ ε1

−ε1

f(t)

f(y)
KN (y − t) dt ≥ h−

h+

∫ ε1

y

K0
N (t− y) −K0

N (t + y) dt + O(N−1),(3.10)

where K0
N ∈ {Jm,N ,B0

m,N}. Set w = w(N) := 2πm
Nγ . Then yk = yk(N) = w k and

there exist r = r(N) ∈ N (r > k) so that ε1 = w r + ε̃1, where 0 ≤ ε̃1 = ε̃1(N) < w.
Now it follows that

∫ wr

yk

K0
N (t− yk) −K0

N (t + yk) dt =

r−k−1∑
l=0

∫ yk+w(l+1)

yk+wl

K0
N (t− yk) −K0

N (t + yk) dt

=

2k−1∑
l=0

∫ w(l+1)

wl

K0
N (t) dt −

r+k−1∑
l=r−k

∫ w(l+1)

wl

K0
N (t) dt

≥
∫ w

0

K0
N (t) dt −

∫ ε1+yk

ε1+yk−w

K0
N (t) dt,

and further by (3.5) and since limN→∞ yk = 0,∫ ε1

yk

K0
N (t− yk) −K0

N (t + yk) dt ≥
∫ w

0

K0
N (t) dt + O(N−2m+1).

Straightforward computation yields

∫ 2πm/(Nγ)

0

K0
N (t) dt ≥ const

∫ π

0

(
sinu

u

)2m

du ≥ const.

Hence we get for N large enough that∫ ε1

yk

K0
N (t− yk) −K0

N (t + yk) dt ≥ const

and by (3.10) that ∫ ε1

−ε1

f(t)

f(yk)
KN (yk − t) dt ≥ const(3.11)

with positive constants const independent of N .
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Now we consider x(N) ∈ IN (f) with yk(N) ≤ x(N) < yk+1(N).
Let z(N) := x(N) − yk(N) > 0. Then

∫ ε1

−ε1

f(t)KN (t− x(N)) dt =

∫ ε1−z(N)

−ε1−z(N)

f(t + z(N))KN (t− yk(N)) dt

=

∫ ε1−z(N)

−ε1

f(t + z(N))KN (t− yk(N)) dt

+

∫ −ε1

−ε1−z(N)

f(t + z(N))KN (t− yk(N)) dt,

and since f is by assumption monotone increasing on [−ε1, ε1]∫ ε1

−ε1

f(t)KN (t− x(N)) dt ≥
∫ ε1−z(N)

−ε1

f(t)KN (t− yk(N)) dt

+

∫ −ε1+z(N)

−ε1

f(t)KN (t− x(N)) dt

=

∫ ε1

−ε1

f(t)KN (t− yk(N)) dt

+

∫ −ε1+z(N)

−ε1

f(t)KN (t− x(N)) dt

−
∫ ε1

ε1−z(N)

f(t)KN (t− yk(N)) dt,

and by (3.5) and since f is bounded∫ ε1

−ε1

f(t)KN (t− x(N)) dt ≥
∫ ε1

−ε1

f(t)KN (t− yk(N)) dt + O(N−2m+1).(3.12)

By assumption x(N) = ζ yk(N) (0 < ζ < 2). Thus∫ ε1
−ε1

f(t)KN (t− x(N)) dt

f(x(N))
≥ const

∫ ε1
−ε1

f(t)KN (t− yk(N)) dt

f(yk(N))
,

and since f(yk(N) ≥ constN−2s and m ≥ s + 1 we obtain by (3.12), (3.11) that for
N large enough ∫ ε1

−ε1

f(t)KN (t− x(N)) dt / f(x(N)) ≥ const

with a nonnegative constant const independent of N . Finally, we use (3.6) with b = ε1

and again m ≥ s + 1 to finish the proof.
To show our main result we also need the following lemma.
Lemma 3.2. Let A ∈ C

N,N be a Hermitian positive definite matrix having N−n1

eigenvalues in [a−, a+], where 0 < a− ≤ a+ < ∞. Let B ∈ C
N,N be a Hermitian

matrix with N−n2 singular values in [b−, b+], where 0 < b− ≤ b+ < ∞. Then at least
N − 4n1 − n2 eigenvalues of A B are contained in [−a+b+,−a−b−] ∪ [a−b−, a+b+].

Proof. (1) Assume first that n1 = 0, i.e., A has only eigenvalues in [a−, a+]. Let
λj(B) denote the jth eigenvalue of the matrix B. We consider the eigenvalues of
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B − tA−1 with respect to t ∈ R. By Weyl’s interlacing theorem (see [13, p. 184]) we
obtain for t ≥ 0 that

λj(B) − t

a−
≤ λj

(
B − tA−1

) ≤ λj(B) − t

a+
(3.13)

and for t < 0 that

λj(B) − t

a+
≤ λj

(
B − tA−1

) ≤ λj(B) − t

a−
.(3.14)

Let λj(B) ∈ [−b+,−b−]. Then we obtain by (3.13) and (3.14) that λj

(
B − tA−1

)
< 0

for all t > −a−b−. On the other hand, we see by (3.13) and (3.14) that λj

(
B − tA−1

)
> 0 for all t < −a+b+. Thus, since λj

(
B − tA−1

)
= λj(t) is a continuous function in

t ∈ R, there exists tj ∈ [−a+b+,−a−b−] such that λj

(
B − tjA

−1
)

= 0. This implies
that tj ∈ [−a+b+,−a−b−] is an eigenvalue of AB. Consequently, every λj(B) ∈
[−b+,−b−] corresponds to an eigenvalue tj ∈ [−a+b+,−a−b−] of AB. (Eigenvalues
are called with multiplicities.)

The examination of λj(B) ∈ [a−b−, a+b+] follows the same lines.

In summary, N − n2 eigenvalues of AB are contained in [−a+b+,−a−b−] ∪
[a−b−, a+b+].

(2) Let n1 eigenvalues of A be outside [a−, a+]. Then, since A is positive definite,
the matrix can be split as

A1/2 = Ã
1/2

+ R(n1) ,(3.15)

where Ã
1/2

is Hermitian with all eigenvalues in [a
1/2
− , a

1/2
+ ] and R(n1) is a Hermi-

tian matrix of rank n1. The eigenvalues of AB coincide with the eigenvalues of
A1/2BA1/2. Hence it remains to show that at most 4n1 + n2 singular values of
A1/2BA1/2 are not contained in [a−b−, a+b+]. By (3.15) we have

A1/2BA1/2 = Ã
1/2

BÃ
1/2

+ R(2n1) ,(
A1/2BA1/2

)2

=
(
Ã

1/2
BÃ

1/2
)2

+ R(4n1).(3.16)

By (1) all but n2 singular values of Ã
1/2

BÃ
1/2

are contained in [a−b−, a+b+]. Then
(3.16) and Weyl’s interlacing theorem yield the assertion.

Theorem 3.3. Let f = psh ∈ L2π be given by (1.2)–(1.4). Assume that for all tj
(j ∈ {1, . . . , μ}) with tj = ξk for some k ∈ {1, . . . , ν} and sgnh(ξk+0) �= sgnh(ξk−0)
there exists a neighborhood [tj − εj , tj + εj ] (εj > 0) of tj so that f is a monotone
function in this neighborhood and moreover f(tj − t) = −f(tj + t) (0 ≤ t ≤ εj). Let
KN = Km,N be given by (3.2) or (3.3), where

m ≥ σ + 1.

By α, β we denote the constants from Theorem 3.1.

Then, for any ε > 0 and sufficiently large N , except for O(logN) singular values,

all singular values of MN (|KN ∗ f |)− 1
2 AN (f)MN (|KN ∗ f |)− 1

2 are contained in [α−
ε, β + ε].
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Proof. Let BN (f) be defined by (2.11). Then we obtain by (2.12) that

MN,KN∗f (|KN ∗ f |)− 1
2 AN (f) MN,KN∗f (|KN ∗ f |)− 1

2(3.17)

= MN,KN∗f (|KN ∗ f |)− 1
2 MN,f (p) MN,f (|h|) 1

2 BN (f)

· MN,f (|h|) 1
2 MN,f (p̄) MN,KN∗f (|KN ∗ f |)− 1

2

= MN,KN∗f (|KN ∗ f |)− 1
2 MN,f (p) MN,f (|h|) 1

2

· MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2

· MN,f (|h|) 1
2 MN,f (p̄) MN,KN∗f (|KN ∗ f |)− 1

2 + R(4s + 2m).(3.18)

The distribution of the eigenvalues of MN,f (|h|)− 1
2 AN (h)MN,f (|h|)− 1

2 is known by
Lemma 2.2. It remains to examine the eigenvalues of the Hermitian positive definite
matrix

MN,f (|h|) 1
2 MN,f (p̄) MN,KN∗f (|KN ∗ f |)−1 MN,f (p) MN,f (|h|) 1

2 .

These eigenvalues coincide with the reciprocal eigenvalues of MN,f (|f |)−1 MN,KN∗f
(|KN ∗ f |). By definition of MN,g and since KN is a reproducing kernel, except
for O(1) eigenvalues, all eigenvalues of MN,f (|f |)−1 MN,KN∗f (|KN ∗ f |) are given
by |(KN ∗ f)(2πl/N)|/|f(2πl/N)| (l ∈ IN (f)). Thus, by Theorem 3.1, for N → ∞
only O(1) eigenvalues of MN,f (|f |) MN,KN∗f (|KN ∗f |)−1 are not contained in [α, β].
Consequently, by (3.18), Lemma 2.2, Lemma 3.2, and Weyl’s interlacing theorem at

most O(logN) singular values of MN,KN∗f (|KN ∗f |)− 1
2 AN (f)MN,KN∗f (|KN ∗f |)− 1

2

are not contained in [α− ε, β + ε].

4. Trigonometric preconditioners. In addition to section 2, we suppose that
the Toeplitz matrices AN ∈ R

N,N are symmetric, i.e., the generating function f ∈ L2π

is even. This suggests the application of so-called trigonometric preconditioners. Note
that in the symmetric case the multiplication of a vector with AN can be realized
using fast trigonometric transforms instead of fast Fourier transforms (see [15]). In
this way complex arithmetic can be completely avoided in the iterative solution of
(1.1). This is one of the reasons to look for preconditioners which can be diagonalized
by trigonometric matrices corresponding to fast trigonometric transforms instead of
the Fourier matrix FN .

In practice, four discrete sine transforms (DST I–IV) and four discrete cosine
transforms (DCT I–IV) were used (see [25]). Any of these eight trigonometric trans-
forms can be realized with O(N logN) arithmetical operations. Likewise, we can
define preconditioners with respect to any of these transforms.

In this paper, we restrict our attention to the so-called discrete cosine transform of
type II (DCT-II) and discrete sine transform of type II (DST-II), which are determined
by the following transform matrices:

DCT–II : CII
N :=

(
2

N

)1/2 (
εNj cos

j(2k + 1)π

2N

)N−1

j,k=0

∈ R
N,N ,

DST–II : SII
N :=

(
2

N

)1/2 (
εNj+1 sin

(j + 1)(2k + 1)π

2N

)N−1

j,k=0

∈ R
N,N ,

where εNk := 2−1/2(k = 0, N) and εNk := 1 (k = 1, . . . , N − 1). We propose the
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preconditioners

DCT − II : MN,f (|f |,CII
N ) := (CII

N )′ diag (|f(x̃N,l)|)N−1
l=0 CII

N ,

DST − II : MN,f (|f |,SII
N ) := (SII

N )′ diag (|f(x̃N,l)|)Nl=1 SII
N ,

where

x̃N,l :=

{
lπ
N if f

(
lπ
N

) �= 0,

l̃π
N otherwise

and where l̃ ∈ {0, . . . , N − 1} is the next higher index to l such that |f(x̃N,l)| > 0.
(See [16].)

Then we can prove in a completely similar way as in section 2 that for any ε > 0
and sufficiently large N except for O(logN) singular values, all singular values of

MN,f (|f |,O)−
1
2 AN (f)MN,f (|f |,O)−

1
2 (O ∈ {SII

N ,CII
N })

are contained in [1 − ε, 1 + ε].

5. Convergence of preconditioned MINRES. In order to prescribe the con-
vergence behavior of preconditioned MINRES with our preconditioners of the previous
sections, we have to estimate the smaller outliers for increasing N .

Lemma 5.1. Let f ∈ L2π be defined by (1.2)–(1.4). Assume that κ2(AN (f)) =
O(Nα) (α > 0). Then the smallest absolute values of the eigenvalues of

MN,f (|f |)−1 AN (f)

and

MN,KN∗f (|KN ∗ f |)−1 AN (f)

behave for N → ∞ as O(N−α).
Proof. Since

‖AN (f)−1MN,f (|f |)‖2 ≤ ‖MN,f (|f |)‖2

‖AN (f)‖2
κ2(AN (f)),

‖AN (f)−1MN,KN∗f (|KN ∗ f |)‖2 ≤ ‖MN,KN∗f (|KN ∗ f |)‖2

‖AN (f)‖2
κ2(AN (f)),

and both ‖MN,f (|f |)‖2 and ‖MN,KN∗f (|KN ∗ f |)‖2 are restricted from above, it
remains to show that there exists a constant c > 0 independent of N so that

‖AN (f)‖2 > c.

The above inequality follows immediately from the fact that the singular values of
AN (f) are distributed as |f | (see [14, 23]).

We want to combine our knowledge of the distribution of the eigenvalues of our
preconditioned matrices with results concerning the convergence of MINRES.
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Theorem 5.2. Let A ∈ C
N,N be a Hermitian matrix with p and q isolated large

and small singular values, respectively:

0 < σ1 ≤ σ2 ≤ · · · ≤ σq < a ≤ σq+1 ≤ · · ·σN−p ≤ b

< σN−p+1 ≤ σN−p+2 ≤ · · · ≤ σN (0 < a ≤ b < ∞).

Let ν(k) := 0 if k− p− q ≡ 0 mod 2 and ν(k) := 1 otherwise. Then MINRES requires
for the solution of Ax = b

k ≤ 2

(
ln

2

τ
+

q∑
k=1

ln

(
1 +

b

σk

)
+ p ln 2

)
/

(
ln

1 + (ab )

1 − (ab )

)
+ p + q + ν(k)

iteration steps to achieve precision τ , i.e., ||r(k)||2
||r(0)||2 ≤ τ, where r(k) := b − A x(k) and

x(k) is the kth iterate.
The theorem can be proved by using the same technique as in [1, pp. 569–573].

Namely, based on the known estimate

||r(k)||2
||r(0)||2 ≤ min

pk∈Π0
k

max
λj

|pk(λj)|,

where Π0
k denotes the space of polynomials of degree ≤ k with pk(0) = 1 and λj are

the eigenvalues of A, we choose pk as the product of the linear polynomials passing
through the p + q outliers and the modified Chebyshev polynomials

T�(k−p−q)/2	

(
1 + 2

a2 − x2

b2 − a2

)
/ T�(k−p−q)/2	

(
1 + 2

a2

b2 − a2

)
.

The above summand p ln 2 can be further reduced if we use polynomials of higher
degree for the larger outliers.

Note that a similar estimate can be given for the CG method applied to the
normal equation A∗Ax = A∗b. Here we need

k ≤
(

ln
2

τ
+

q∑
k=1

ln

(
b

σ2
k

))
/

(
ln

1 + (ab )

1 − (ab )

)
+ p + q

iteration steps to achieve precision ‖e(k)‖A

||e(0)||A
≤ τ , where e(k) := x∗ − x(k). Note that

the latter method requires two matrix-vector multiplications in each iteration step.
By Theorem 2.4, Theorem 3.3, and Lemma 5.1 our preconditioned MINRES with

both preconditioners MN,f (|f |) and MN,KN∗f (|KN ∗ f |) produces a solution of (1.1)
of prescribed precision in O(logN) iteration steps and with O(N log2 N) arithmetical
operations. The same holds for preconditioned CG applied to the normal equation.

6. Numerical results. In this section, we test our circulant and trigonometric
preconditioners in connection with different iterative methods on a SGI O2 work
station. As transform length we use N = 2n, as right-hand side b of (1.1) we use the
vector consisting of N entries “1,” and as start vector we use the zero vector.

We begin with a comparison of MINRES applied to

MN,f (|f |,O)−1 AN (f) x = MN,f (|f |,O)−1 b,(6.1)
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Table 1

f(t) = h1(t) t2 h1(t) = (t2 + 1) sgn (t) (t ∈ [−π, π)).

Method MN,f 4 5 6 7 8 9 10

MINRES IN 23 71 277 * * * *

MINRES MN,f (|f |,FN ) 15 17 17 19 21 23 23

MINRES MN,FN∗f (|FN ∗ f |,FN ) 19 31 35 41 43 47 51

MINRES MN,B2,N∗f (|B2,N ∗ f |,FN ) 19 23 23 25 25 27 29

CGNE IN 11 37 164 * * * *

CGNE MN,f (|f |,FN ) 8 8 9 9 9 10 10

where O ∈ {FN , CII
N , SII

N } and CGNE (Craig’s method) (cf. [18, p. 239]) applied to

(MN,f (|f |,O)−
1
2 AN (f) MN,f (|f |,O)−

1
2 ) (MN,f (|f |,O)

1
2 x) = MN,f (|f |,O)−

1
2 b.

(6.2)

For both algorithms we have used Matlab implementations of Fischer (see also
[12]). In particular, his implementation of preconditioned MINRES avoids the split-
ting (6.2).

In order to make the following computations with MINRES and CGNE compa-
rable, we have stopped both computations if

||b − ANx(k)||2 / ||b||2 < 10−7.

Example 1. We begin with Hermitian Toeplitz matrices AN (f) arising from the
generating function

f1(t) = h1(t) t
2 with h1(t) = (t2 + 1) sgn (t) (t ∈ [−π, π)).

Table 1 presents the number of iterations for circulant preconditioners. The first row
of the table contains the exponent n of the transform length N = 2n. According to
Theorem 2.4 and Theorem 5.2, the preconditioners MN (|f |,FN ) lead to very good
results. As expected, the preconditioners MN,KN∗f (|KN ∗ f |,FN ) with the Fejér
kernels KN = FN are not suitable for (1.1) (cf. also [17]), while the preconditioners
with KN = B2,N do their job.

Further, CGNE needs half the number of iterations but twice the number of
matrix-vector multiplications per iteration as MINRES needs. See also section 5.

Example 2. Next, we consider the symmetric Toeplitz matrices AN (f) arising
from the generating function

f2(t) = h2(t) (cos(t + 2) + 1) (cos(t− 2) + 1)

with

h2(t) = sgn(t− π + 2) sgn(t + π − 2).

Table 2 presents the number of iterations for trigonometric preconditioners. The
results are similar to those of Example 1, except that CGNE requires nearly the same
number of iterations as MINRES.
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Table 2

f2(t) = h2(t) (cos(t + 2) + 1) (cos(t− 2) + 1) (t ∈ [−π, π)).

Method MN 4 5 6 7 8 9 10

MINRES IN 9 17 45 142 401 * *

MINRES MN,f (|f |,CII
N ) 8 9 10 11 14 13 16

MINRES MN,f (|f |,SII
N ) 9 10 11 12 14 13 16

MINRES MN,FN∗f (|FN ∗ f |,CII
N ) 10 15 20 26 30 39 53

MINRES MN,FN∗f (|FN ∗ f |,SII
N ) 10 15 19 25 30 39 53

MINRES MN,B2,N∗f (|B2,N ∗ f |,CII
N ) 9 15 17 16 20 18 18

MINRES MN,B2,N∗f (|B2,N ∗ f |,SII
N ) 9 14 16 18 19 18 18

CGNE IN 10 29 99 413 * * *

CGNE MN,f (|f |,CII
N ) 7 9 11 11 17 16 17

CGNE MN,f (|f |,SII
N ) 7 7 10 10 12 14 15

Table 3

f3(t) = (( t
π

)2 − 1)2 − 0.9 (t ∈ [−π, π)).

Method MN 4 5 6 7 8 9 10

MINRES IN 9 17 33 66 133 * *

MINRES MN,f (|f |,CII
N ) 6 7 7 8 7 7 7

MINRES MN,f (|f |,SII
N ) 7 8 8 7 9 8 8

MINRES MN,FN∗f (|FN ∗ f |,CII
N ) 8 11 15 17 16 17 17

MINRES MN,FN∗f (|FN ∗ f |,SII
N ) 8 11 15 16 15 15 15

MINRES MN,B2,N∗f (|B2,N ∗ f |,CII
N ) 8 10 10 11 9 7 7

MINRES MN,B2,N∗f (|B2,N ∗ f |,SII
N ) 8 10 10 10 9 9 8

CGNE IN 8 22 65 164 378 * *

CGNE MN,f (|f |,CII
N ) 5 6 6 8 6 5 6

CGNE MN,f (|f |,SII
N ) 6 6 6 6 7 7 7

Example 3. Finally, we consider an example from [21, Table 4.9]:

f3(t) =

((
t

π
)2 − 1

)2

− 0.9 (t ∈ [−π, π)

)
.

This generating function doesn’t fit into our setting (1.2). However, our precondi-
tioning technique leads to very good practical results; see Table 3. For N = 512 the
preconditioned MINRES with our preconditioner MN,B2,N∗f (|B2,N ∗f |,CII

N ) requires
only 7 iterations. For comparison, PCG with the banded Toeplitz preconditioner of
bandwidth 37 suggested in [21] requires 2 iterations. The theoretical justification of
these numerical results is part of further research.
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