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Abstract

In this paper, we construct new w-circulant preconditioners for non-Hermitian
Toeplitz systems, where we allow the generating function of the sequence of
Toeplitz matrices to have zeros on the unit circle.

We prove that the eigenvalues of the preconditioned normal equation are clus-
tered at 1 and that for (N, N)-Toeplitz matrices with spectral condition number
O(N®) the corresponding PCG method requires at most O(N log? N) arithmeti-
cal operations. If the generating function of the Toeplitz sequence is a rational
function then we show that our preconditioned original equation has only a fixed
number of eigenvalues which are not equal to 1 such that preconditioned GMRES
needs only a constant number of iteration steps independent of the dimension of
the problem.

Numerical tests are presented with PCG applied to the normal equation, GM-
RES, CGS and BICGSTAB. In particular, we apply our preconditioners to com-
pute the stationary probability distribution vector of Markovian queuing models
with batch arrival.
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1 Introduction

Let (5, denote the space of 2r-periodic continuous functions and let W be the Wiener
algebra.
We are concerned with the solution of non-Hermitian Toeplitz systems

arising from a generating function f € W with a finite number of zeros, i.e.

Anx(f) = (ajfk(f));'\,fk_:lo ’

a(f) = %/ F(Be dr

We are interested in iterative solution methods, more precisely in Krylov space methods.
These methods require in each iteration step only multiplications of Ay(f) with vec-
tors and since Ay(f) is Toeplitz these multiplications can be computed in O(N log N)
arithmetical operations by using fast Fourier transforms. However, in order to keep
the number of iterations small, iterative methods must be applied with suitable pre-
conditioning, in general. The construction of “good” preconditioners is the aim of this
paper.

Although there exists a rich literature on Hermitian Toeplitz systems (see [4] and the
references therein), only few papers consider the non-Hermitian case [3, 5, 6, 9, 12].
The papers [5, 6, 9, 12] construct preconditioners only for generating functions f with
strictly positive absolute value, i.e. |f| > ¢ > 0. In [5], the authors suggested the use
of optimal circulant preconditioners M y of Ax(f) and to solve the normal equation

(MY An(f)) My An(f) & = (M Ax(f))" My' b

by the CG method. Here A" denotes the transposed complex conjugate matrix of
A. Tn [6] and [12], 7-preconditioners depending on |f|> and optimal trigonometric
preconditioners of Ayx(f)*An(f), respectively, were proposed for preconditioning of
the normal equation

AN (f)An(f)z = AN (f)b. (1.2)

The paper [9] contains interesting results for Strang preconditioners and for four other
special preconditioners for the case that the generating function f > 0 is a rational
function.

The only paper, where generating functions with zeros were considered, is [3]. Here the
authors suggested preconditioners M y which are products of banded Toeplitz matrices
and optimal circulant matrices and examine the distribution of the singular values of
the preconditioned matrices M ' Ay (f). Unfortunately, it is not clear how the number
of iteration steps of the preconditioned CGS method [16] used in their numerical tests
depends on this distribution of the singular values.



In this paper, we introduce circulant, respectively w-circulant preconditioners related
to |f|? for the normal equation (1.2) even if f € W has zeros. These preconditioners
can be applied with a fewer amount of arithmetical operations than the combined
preconditioners in [3]. We show that the singular values of the preconditioned matrix
are clustered at 1 and that in case if the spectral condition number of Ay(f) is O(N%)
the PCG method applied to (1.2) converges in O(log N) iteration steps.

We are also interested in Krylov space methods like GMRES or BICGSTAB which do
not require the translation of (1.1) to the normal equation. Here we suggest circulant,
respectively w-circulant preconditioners related to f. Unfortunately, the convergence of
these methods does no longer depend on the singular values but on the eigenvalues of
the preconditioned system. We can not prove clustering results for arbitrary generating
functions f € W. However, for rational functions f, we show that the preconditioned
matrices have only a finite (independent of N) number of eigenvalues which are not
equal to 1 such that preconditioned GMRES converges in a finite number of steps in-
dependent of the dimension of the problem.

This paper is organized as follows: In Section 2, we introduce our circulant, respec-
tively w-circulant preconditioners and prove corresponding clustering results. Section
3 modifies these results for trigonometric preconditioners. Finally, Section 4 contains
numerical examples for various iterative methods and preconditioners. In particular,
we apply our preconditioners to the queueing network problem with batch arrivals ex-
amined in [3].

2 w—circulant preconditions

In order to prove our main result in Theorem 2.5 we need a couple of preliminary
lemmata. In the following we denote by Ry(m) arbitrary (N, N)-matrices of rank at
most m.

Lemma 2.1 Let f € W. Then, for any ¢ > 0 and N sufficiently large, there exists
M = M(e) independent of N such that

Ay (NAN(f) = An(If") + Ux + Ry (M),

where [|[U y||2 < €.

To be careful with respect to our setting, we notice the short proof which in general
follows the lines of [6].

Proof. Let

a, = (a07a17 S 7aN71), y @ = (Oadfla S 7(_1'7(]\771)) )

C~l+ = (O,ELN_l, ce ,al)' , a_ = (O,G,(Nfl), ce ,a_l)',

where y' denotes the transposed vector of y and let L(y) be the lower triangular
Toeplitz matrix with first column y. Then Ay(f) = L(a+) + L*(a_) and we obtain
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by straightforward computation that

AN(f)Ax(f) = L'(ay)L*(a-)+ L(a-)L(a;) + L*(a,)L(a) + L(a.)L*(a.)
+L(a_)L*(a-) + L*(a-)L(a ) L(a;)L"(ay) — L*(a-)L(a-)
= Ayx(ISvf) - L(ay)L*(ay) — L*(a-)L(a-)
= An(IfP)+An(ISnfP? = 1))~ L(ay)L* (a4)— L*(a-) L(a-),(2.3)
where N1
(St = D ape™
k=—(N-1)

Since f € W, the Fourier sums Sy f converge uniformly to f, i.e. for any & > 0 there
exists M (£) such that

ISnf—f| <& forall N> M().
This implies that for any € > 0 there exists M;(g) such that
[[SnfI? = |fI?] <e/3 forall N> M(e).
Thus
[AN(ISxfI* = [f)]l2 < £/3. (2.4)
Further, since f € W, for any £ > 0 there exists M = M (e) > M () such that

N-—1 N-1
g
max{ Sl Y |ak|}§\/; for all N > M(z). (2.5)

k=—M+1 k=—M+1

Now we split the triangular Toeplitz matrices in (2.3) into banded matrices and matrices
of rank |M/4], i.e

L(d+) :B++R+, L(d_) :B_+R_, (26)
where
B+ = L ((0, dN,l, NN ,(_LM+1, OI]V[),) y R+ =L ((OlNiM,C_I,M, e ,C_Ll),) y
B_ = L ((0, A (N-1)s- - » B (M+1), ogw)') ,R_:=1L ((OGV_M, A pfy - - ,a_l)')

with zero vectors o), of length |M/4] and obtain
L(a,)L*(ay)+ L*(a_)L(a-) =B, B, +B*"B_ + L(a;)R, +R.B’,
+ L'(@a)R_+R'B._.
Now we have by (2.5) that

¥ N 2e
1B+B + B_B_||2 < ||B+|1[| Bi[l + | BZ[LIB-|l < =,



while rank (L(a4)R, +RyB’, +L*(a_)R_+R"B_) < M. Together with (2.3), (2.4)
and Weyl’s interlacing theorem [8, p. 184] this yields the assertion. [ |

For a function f and equispaced nodes

xN,l::wN—i-%ﬂl <l:O,...,N—1;wN€{O,2§>> (2.7)
we introduce the w—circulant matrices (w := eN¥~)
My (f) = WnNFxDy(f)FyWy, (2.8)
where
Fy:= L(efZWijk/N)j'\,rzc;lo7 Wy = diag(e V)L, Dy (f) = diag(f(zn,))5 "

VN

See [12]. If wy = 0, then M x(f) is a circulant matriz. If ¢ is a trigonometric polyno-

mial, i.e.
52

a0 =3 arlg)e™,

k=—s1
then, by [12], the matrices Ayx(q) and M y(q) are related by
An(q) = My(q) — Bn(q) (2.9)

where By(q) = (bj,k(q))f,;lo is the Toeplitz matrix of rank s; + s, with

b—(N—k) (Q) = .einNak(Q) (k =1,... 782)7
byv_i(q) =e NNa_i(q) (k=1,...,51),
be(q) =0 otherwise.

Having Lemma 2.1 in mind, we propose the Hermitian w-circulant matrix M y(|f|?)
as preconditioner for A% (f)Ax(f). If |f] > 0, then M y(|f[?) is positive definite.
Further, by using Lemma 2.1, it is easy to prove the following lemma.

Lemma 2.2 Let f € W and let |f| > fuin > 0. Then, for any ¢ > 0 and N sufficiently

large,
My (|f)" AN (f)AN(f) = In + Uy + Ry,

where ||U |2 < € and Ry is a matrix of low rank independent of N.

Proof. By Lemma 2.1 and since || M y(|f|*)7']o < 1/f2;,, it remains to show that
My(|fP) ' An(|fI") =In+Ux + Ry

with low norm and low rank matrices U y and Ry, respectively.
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Since |f]? is continuous and |f|* > f2,, > 0, for any ¢ > 0 there exists a trigonometric
polynomial of degree M = M (e) such that

1 1
¢ = 58 min S U1 <0+ 52 fan (2.10)
Using this relation and the fact that Ay (M y(f]%)) > f2;,, we conclude that for every
o#uecCV
u*Ay(q)u 1 uw* An(|f]*)u u*Ax(q)u 1

W B 56 < U*MN(|f|2)’U, < U*MN(|f|2)’U, + 56. (211)

By (2.9), the right hand inequality can be written as
u Ay (| f[*)u u*My(q)u u'By(gJu 1

£
wMy([fP)u = wMy([fP)u - w*My(|fP)u 2
and further by (2.10) and definition of My as

w Ay (|fP)u w By (q)u
W My(Pu = WM (P

Handling the left-hand inequality of (2.11) in the same way and applying Weyl’s inter-
lacing theorem, we obtain the assertion. |

The more interesting case even for practical purposes appears if we allow f to have
zeros. In the following, let f € Cy,; be given by

F=psh, (2.12)
where h € W with |h| > hpi, > 0 and

m

ps(t) — H(eit - eitj)Sj

j=1

with pairwise distinct zeros ¢; € [~m,m) and ) 7", s; = s. We choose our grid points
zy; (1=0,...,N—1) for the construction of our w-circulant preconditioner M x(|f]?)
such that

ryyF#t (G=1,... ml=1,... , N—1). (2.13)

See also Remark 2.6. Then M y(|f|?) is positive definite. Moreover, we will prove that
the eigenvalues of M y(|f|?) 1Ay (f)An(f) have a proper cluster at 1. Note that these
eigenvalues coincide with the square of singular values of Ay (f)My(f) L.

Theorem 2.3 Let f € W be given by (2.12). Let M y(f) be defined by (2.8) and
(2.13). Then, for any € > 0 and N sufficiently large,

(An(f)MN(f) ") (An(/)MN(f) ") =In+Un + Ry,

where |U y||2 < £ and Ry is a matrix of low rank independent of N.
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Proof. By straightforward calculation, we obtain for 0 <m < N—-1,0<n <N —s

S

(An(h)Ay (pS))m,n Z(pS) h—j = (AN(hPS))m ns

AN(hps) = AN(h)AN(ps) + CN(S), (214)

where C'n(s) has only nonzero entries in its last s columns.

Then, by (2.9) and definition of M x(f)

Ax(F)My(F)™" = (An(h)An(ps) + Cn(s)Mn(f)~
= (A (h)(MN(ps) By(ps)) +Cn(s) Mn(f)™"
= Ay(R)My(h)~' + Ry(s).

Thus

(An(NMN(f) ) (An(HMN(f)) = (Ax(h) My (h) )" An (h) My (h) " +Ry(2s).

The rest of the proof follows immediately by Lemma 2.2 and Weyl’s interlacing theo-
rem. |

The proper clustering of the singular values of Ay (f)M y(f)~! leads to a superlinear
convergence of the CG-method applied to the normal equation (1.2). In order to esti-
mate the number of iteration steps we have to estimate the smallest singular values of
An(f)M N (f)!. Following the lines of [5], we first prove the following lemma.

Lemma 2.4 Let f € W be given by (2.12). Let M y(f) be defined by (2.8) and (2.13).
Then there exists ¢ > 0 independent of N such that

My (f)An () Iz < e ma(An(f)),

where ka(An(f)) = [|An(f)7 2l An(f)]|2 denotes the spectral condition number of
Ax(f).

Proof. Since

IMn(f)AN(f) Mz < NANHI  IM N (F)]]2 52(An(f))

and since || M y(f)||2 is bounded from above, it remains to show that there exists ¢ > 0
independent of N such that
[AN(f)ll2 > ¢

But this follows immediately from the fact that the singular values of Ay (f) are dis-
tributed as |f]| (see [11, 19]). |



Theorem 2.5 Let f € W given by (2.12) and let ky(An(f)) = N%*(« > 0). Let
My (|f]?) be defined by (2.8) and (2.13). Then CG applied to

My (IfP) T AV An(flz = Mn(fP)7 AN ()b,
requires O(log N) iteration steps to produce a solution of prescribed precision.

Proof. By a result of Axelsson [1, p. 573] and by Theorem 2.3, the number of iterations
of the CG-method to obtain a solution of the above equation up to a prescribed precision

T is given by
2 & 1+e 1+ (159"

k=1 T+e

L)

where o < ... < 0, are the smallest singular values of Ay (f)M y(f) * which are not
inside our cluster [1 —&,1+¢] and where p+ ¢ = rank (Ry). Here ¢ and Ry are taken
with respect to Theorem 2.3. By Lemma 2.4 we have that o > || M y(f)Ax(f)7!,2 >
c¢N 2% and consequently

) <2aqclInN.

d 1+¢
Z In 2
k=1 Tk
This yields the assertion. [ |

By the following remark it is possible to neglect the grid condition (2.13). In particular
this implies that it is always possible to work with circulant instead of w-circulant
preconditioners. To keep proofs short we have introduced the more general w-circulant
preconditioners.

Remark 2.6 Let the grid points zy; (I = 0,...,N — 1) be given by (2.7) where we

do not assume (2.13). We define, similar as in [18], M y(f) by
My (f) :== Wy Fydiag(f (@)X Fy W, (2.15)

~ _{xl if xl?’étj (jzl,...,m),

Ty = :
! x; otherwise,

where [ € {0,...,N — 1} is the next higher index to [ such that |f(z;)| > 0. For N
large enough we can simply choose [ = [+ 1 mod N. Then, since by construction

My(f) = My(f)+ Ry(m) (2.16)
it is easy to check that the above theorems remain valid with a small fixed number of
more outlying eigenvalues. In particular, if we choose xy,; := 27l/N (I =0,... ,N —1)
we obtain circulant preconditioners M y (f). O



Beyond application of PCG to the normal equation (1.2) we can use other iterative
methods like GMRES and BICGSTAB for the solution of (1.1). These methods avoid
the translation of the original system to the normal equation. However, by Remark 4.1,
the arithmetical complexity per iteration step of BICGSTAB is “nearly the same” as
the arithmetical complexity of CG applied to the normal equation.

As preconditioner we suggest M y(f), respectively M y(f) here. The numerical results
concerning the number of iteration steps of preconditioned GMRES and BICGSTAB
are very good. Unfortunately, the number of iterations does no longer depend on the
distribution of the singular values of the preconditioned matrix but on its eigenvalues.
For arbitrary f € Cy, of the form (2.12) we were not able to prove properties concern-
ing the distribution of the eigenvalues of Ay (f)M x(f)~'. But for special generating
functions, namely rational functions, we obtain the following result (see also [17]):

Theorem 2.7 Let f be a rational function of order (sy, s2) (s152 # 0) given by

p(z) _potpizt.. 4ps2"

f(z) = )
(2) q(z) Qo+ qz+ ...+ qs,2%

Define M x(f) by (2.8) with grid points satisfying (2.13) if f(e) =0 (j = 1,...,m).
Then
An(f)My(f)™" = Iy + Ry(max {s1, s:}) .

Proof. By (2.9), (2.14) and definition of M y(f), we obtain

ANNIMA) = (A (1) Axto) + Culo) p1y (2)
— Ay (5) M0 - Bl + O 5 (2)
= Ay G) M G) + Ry (s1), (2.17)

where only the last s; columns of Ry(s;) are nonzero columns. Similar we obtain
by (2.14), (2.9) and definition of M y(f)

Iy = AN<$>AN@y+cN@g

= v (5) (Ml ~ Bula) + Onle
= Ay G) M} G) + R(s2), (2.18)

where only the last sy columns of Ry(ss) are nonzero columns. Now the assertion
follows by (2.17) and (2.18). |

By Remark 2.6 we can prove a similar result with respect to the preconditioner MN(f).



Note that similar results concerning the number of outliers outside [1 — &,1 + ] were
obtained for the preconditioned matrices in [9] if | f| > 0. The preconditioners in [9] do
not require the explicit knowledge of the generating function.

Let An(f)Mny(f)™" = In + Ry(s). By [14, p. 195], the residual
r® =b— (Iy + Ry(s))y®

of the k-th iteration of GMRES applied to the preconditioned system can be estimated

by

ir®

l2 :
< min |[p(Iy + Rn(s ,
||’I"(0)||2 = pEH%Hp( N N( ))||2

where TI) denotes the space of polynomials of degree < k with p(0) = 1. Assume
that Ry (s) has the pairwise distinct nonzero eigenvalues Ay, ... , A, with multiplicities
ni,...,Nq, Where n; +...+n, = s. Let

RN = Xdiag(:fl,l,... 7'—71,m17--- an,la--- 7Jq,mqaoN—s) .}(71

with jj,k € C"-x "k and nonincreasing sizes njy fulfilling n;, + ... +n;j,, = n;, be the
decomposition of Ry into Jordan blocks. Then

Iy+Ry(s) = Xdiag(Jig,...  Jgm Ins) X", Jjp=1I,,+ ik,
p(In + Ry(s)) = Xdiag(p(J11)s-+ s D(Jgm,), p(In=s)) X", (2.19)

where by [7, p. 557]

(k=1 (.
p()\] + 1) p(l)()\] + 1) ee. ... P J(:Lj k_(i‘g!Jrl)
0 p()\j + 1) S
p(Jik) = | - : SO . (2.20)
: . : o pM (N + 1)

Choosing p € 112, ; as

p(x)zza—x)f[(l— ) e,

iy )\j +1

we see by (2.20) and (2.19) that p(Ix + Rn(s)) becomes zero. Consequently, GMRES
terminates after at most s+ 1 steps. Applied to our setting this means by Theorem 2.7
that GMRES requires at most 1 + max{sj, so} iteration steps.

If we replace the w-circulant preconditioner M y(f) by the circulant preconditioner
M n(f) the number of GMRES steps may increase at most to 1 + max{si, sa} + m.

10



3 Trigonometric preconditioners

Since the function |f|? is even, the matrix Ay(]f]?) is symmetric. This suggests the
application of so-called trigonometric preconditioners. These are matrices which are
diagonalizable by trigonometric transforms. In practice, four discrete sine transforms
(DST I - 1IV) and four discrete cosine transforms (DCT I — IV) were used (see [20]).
Any of these eight trigonometric transforms can be realized with O(Nlog N) arith-
metical operations. Likewise, we can define preconditioners with respect to any of
these transforms.

In this paper, we restrict our attention to the so-called discrete cosine transform of type
IT (DCT-II) and discrete sine transform of type II (DST-II), which are determined by
the following transform matrices:

2\ /* ik +1)m\ !
DCT-1I : C¥ = (—) <eN Cos 7> e RVN,
N J 2N k=0
2\ /2 G+ 1)k + 1)\
DST-1I : 8§ = (—) <eN | sin ) e RV,
N 7 2N k=0

where ¢ :=27Y2(k =0,N) and € := 1 (k=1,...,N —1). For (1.2) we propose the
preconditioners

DCT —11:  My(If]>,CY) = (CY)" diag(|f(@v)P), C¥,
(3.21)
DST—11:  My(|fP,SY) = (S¥)"diag(|f(En0)]))2s SN,

where

i

N

Il I .
. N if T #FG (G=1,...,m),
TN,y = .
otherwise

and where [ € {0,..., N — 1} is the next higher index to [ such that |f(zy,)| > 0. See
[13].
Then we can prove in a completely similar way as in Section 2 the following

Theorem 3.1 Let f € W given by (2.12) and let k3(An(f)) = N* (o > 0). Then CG
applied to

My (|f1?,0n) Ay (f) An(f)z = M (|f*,On) AN(f) b (3.22)

with Oy € {CY, S84} requires O(log N) iteration steps to produce a solution of pre-
scribed precision.

4 Numerical results and an application to queueing
networks

In this section, we test our w-circulant and trigonometric preconditioners on a SGI O2
work station. As transform length we chose N = 2" and as right-hand side b of (1.1)

11



the vector consisting of N entries “1”. The iterative methods started with the zero
vector and stopped if ||r0)]|y/]|7® ], < 1077, where ) denotes the residual vector
after j iterations.

We compare four different iterative methods. We apply CGS, BICGSTAB and restarted
GMRES(20) to

My(f) " An(f)@e=Mny(f) 'b

with circulant preconditioner My (f).
Further we use CG for solving

My AN (f)An(flz = My AL (f)b,
where M y denotes one of the following preconditioners:

My(fF, Fy) = My(fP)  givenby (2.15),
Mu(fP.CY) , My (P SY) givenin (3.21)

and the so-called optimal trigonometric preconditioners
M3(Cy) . MJ(Sy)

of Ay (f)An(f) introduced in [12].

Although CGS is not very common, we have included this method to compare our
results with the results in [3]. In [3], CGS is used without an analysis of the number
of necessary iteration steps. Moreover, the application of our circulant preconditioner
requires less arithmetical operations than the use of the preconditioner consisting of the
product of a banded Toeplitz and an optimal circulant matrix proposed in the above
paper.

The following remark shortly prescribes the effort per iteration step of the proposed
methods.

Remark 4.1 Each iteration step of BICGSTAB and CGS requires two matrix vector

products with the Toeplitz matrix Ax(f) and two matrix vector products with the

preconditioner.

In contrast, GMRES requires only one matrix vector products with the Toeplitz matrix

An(f) and one matrix vector product with the preconditioner. But the number of

inner products grows linearly with the iteration number, up to the restart.

The PCG-method applied to the normal equation requires one matrix vector product

with both Ay (f) and A% (f), and one matrix vector product with the preconditioner.
O

First we test Toeplitz systems with the following rational functions as generating func-
tions (cf. [3]):

, (24— 1) e~ 1 13 7 11, 65ea(/22)\"
(i) fi(z) == == Tout3° Tt T 3 )
-9(-1) 8 kz::l(zz)'c 24 36" 54" 2443
. (12 -1)2 0 9K 5 AT 29, 25K (22"
0 £6 =G5 T sm T T s 2\
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o0

(#1219 7 25K [22)F
(iii) f3(z) := G- =D 4k . EZ_E; <§> :

Tables 1-3 present the number of iteration steps with different iterative methods and
different preconditioners.

The first row of each table contains the exponent n of the transform length N = 2",
The corresponding iterative method is listed in the first column and the preconditioner
in the second column of each table. The symbol * denotes that the method stopped
without converging to the desired tolerance in 500 iteration steps or that the method
stagnated.

In addition to the above preconditioners we also test the w-circulant preconditioner
My(f) = My(f, FyWy) determined by (2.8) with wy = % in connection with
GMRES(20). Since N > 16 is even, the grid points fulfill (2.13). By Theorem 2.7 we
obtain for our three examples that

(i) 4 eigenvalues of Ay (f)M n(f)~" are not equal to 1

(Here all these eigenvalues are equal to 1/2!),

(ii) 4 eigenvalues of Ax(f)M n(f)~! are not equal to 1,

(iii) 3 eigenvalues of Ax(f)M n(f)~" are not equal to 1.

Indeed GMRES requires 2, 4 and 3 iterations, respectively.

For the circulant preconditioner M y(f) we have to replace those of the above grid
points which meet the zeros of the generating function, i.e. in (i) the points 0, 7/2, 7, 37 /2
and in (ii),(iii) the points 0, 7.

By Remark 2.6 this implies 8, 6 and 5 outliers in (i), (ii) and (iii), respectively. Our
numerical results confirm our expectations.

The next examples with generating functions

(iv) fa(t) :=it,

(v) fs5(t) := t2el

show that PCG applied to the normal equation can outperform the other 3 methods.
The function in f4(z) = log(z) (2 := €'*) in (iv) is of special interest. The first row and
column of Ay (it) are given by

and
) ? ? ) y N )

respectively. Matrices of this kind arise in sinc-collocation methods for initial value
problems (see [2]). Note further that (iv) is up to now the only example where the
optimal trigonometric preconditioner works well, too.

Finally, we apply our methods to Markovian queueing models with batch arrivals con-
sidered in [3]: The input of the queueing system will be an exogenous Poisson batch
arrival process with mean batch interarrival time A\~!. By A\; = Apy we denote the batch
arrival rate for batches of size k, where p; is the probability that the arrival batch size
is k. The number of servers in the queueing system is s. Finally we assume that the
service time of each server is independent of the others and is exponentially distributed
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method My 4 5 6 7 8 9 10 11 12
CGS Iy 22 75 379 K Kk ok x K
CGS My (f, Fy) 8§ & & & 8§ *¥ Kk Kk ¥

BICGSTAB | My(f,Fy) |75 75 75 75 7 7 6 7 9

GMRES(20) |  My(f, Fy) 8 8 8 8 8 8 8 8 8

GMRES(20) | My(f,FxWyx) | 3 2 2 2 2 2 2 2 2
PCG My(If2,Fy) |13 13 15 18 18 19 22 23 28
PCG My(lf2,cdy |10 11 11 13 15 15 18 19 22
PCG My(|f2,80) |10 11 12 12 14 15 16 16 19
PCG MY (CH) 14 19 22 29 35 45 58 77 104
PCG M (S 17 26 35 45 59 77 105 144 200

Table 1: f(t) = fi(e') (t € [-m, 7))
method My 4 5 6 7 8 9 10 11 12
CGS Iy 28 156 Kk ok x k% ¥
CGS My (f, Fy) 6 6 7 7 33 * x x  x

BICGSTAB My (f, Fy) 55 6.5 65 65 6 7.5 8 11 11

GMRES(20) | My(f, Fy) 6 6 6 6 6 6 6 T 7T

GMRES(20) | My(f,FxWy)| 5 5 4 4 4 4 4 4 4
PCG My(|fLFy) |11 13 16 20 28 42 53 71 125
PCG My(f2C¥)y | 8 10 11 14 22 28 34 43 62
PCG My(|f2,8) |11 12 14 18 22 31 42 51 71
PCG M () 14 19 27 38 61 129 276 * %
PCG MY (S 17 27 41 75 159 364 * * %

Table 2: f(t) = fo(elt) (t € [-m, 7))
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method M y 4 5 6 7 8 9 10 11 12

CGS Iy 26 70 218 * * * X *

CGS My (f, Fy) 5 6 6 6 6 7 7 7 18

BICGSTAB MN(f,FN) 45 55 55 55 55 65 65 75 75

GMRES(20) |  Mx(f, Fy) 5 5 5 5 5 5 5 5 6
GMRES(20) | My(f,FxWy)| 4 4 3 3 3 3 3 3 3

PCG My(|f%Fy) || 9 9 11 13 15 18 22 26 39
PCG My(|f2,C¥)y |7 8 8 9 11 12 14 16 20
PCG My(If%80) |9 9 11 11 15 16 17 24 31
PCG My (C 13 16 19 26 32 42 57 79 130
PCG My (SH) 18 34 53 99 204 472 *F x  *

Table 3: f(t) = fz(elt) (t € [-m, 7))

method M 4 5 6 7 8 9 10 11 12
CGS Iy 16 * * * * * * * *
CGS MN(f, FN) * * * * * * * * *

BICGSTAB | My(f,Fy) | * * * * * * % x «x

GMRES(20) | My(f,Fy) |7 8 9 9 10 10 11 11 12

PCG My(|f%Fy)|| 5 5 6 7 7 7 8 11 15

PCG My(lf?ciH |5 5 5 8 8 8 9 11 13

PCG My(If,8H 15 5 5 6 6 6 6 7 9

PCG MyCly |8 10 13 17 20 26 33 42 56

PCG MUSYy e 7 7 7T 8 8 8 9 10

Table 4: f(t) =it (t € [-m, 7))

with mean p~!. The waiting room is of size N — s — 1 and the queueing discipline
is blocked—customers—cleared. If the arrival batch size is larger than the number of
waiting places left, then only part of the arrival batch will be accepted, the other cus-
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method M y 4 5 6 7 8 9 10

CGS Iy 58 * * * * * *

CGS My(f,Fy) | 17 * % % & % *

BICGSTAB MN(f,FN) 185 37 585 84 8 945 102

GMRES(20) | My(f,Fy) | 16 176 *  * *  * *

PCG My(|f>,Fy) | 11 14 15 21 26  * *

PCG My(lf2,ciy| 12 15 17 20 28 35 40

PCG My(f580) | 10 11 11 14 14 20 21
PCG Myl 17 29 53 111 257 631 1812
PCG My (S 14 17 19 24 31 45 62

Table 5: f(t) = t%e' (t € [-7,7))

tomers will be treated as overflows and will be cleared from the system. This kind of
queueing system occurs in many applications, such as telecommunication networks [10]
and loading dock models [15].
By [3], the probability distribution vector of the queueing system is given by the solution
of a system of linear equations

(AN(f)+RN(S))m = (07 7075M),7 (41)

where Ay(f) denotes the lower Hessenberg Toeplitz matrix with generating function

1 > :
= —sps o Absu— Y A2t (2= el
f(2) SH- + A+ spu 2 k20 (z:=¢€")

Clearly, our preconditioners M, (f) also lead to a clustering of the singular values of

My(f)""(An(f) + Rn(s)).
As examples we choose s € {1,4}, A\ =1, u = s and \y = 2* (cf. [3]). In this case

(z—=1)(22+ s+ pz — 2sp)
2(z — 2)

f(z) = fe(2) ==

By Theorem 2.7, the matrices M x(f)"'(Ax(f) + Rx(s)) have only 3, respectively 6
eigenvalues which are not equal to 1. The numerical results for fs(z) are reported in
Table 6.
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S 4
method My 4 6 8 10 124 6 & 10 12
CGS My(f,Fy) |3 3 3 3 3|6 6 6 6 6
BICGSTAB | My(f,Fy) |25 25 25 25 25|55 55 55 55 5.5
GMRES(20) | My(f,Fy) |3 3 3 3 3|6 6 6 6 6
PCG My(|fFy) |5 5 6 6 8 |8 8 9 9 9
PCG My(f28H(5 5 5 7 7|8 8 8 8 9
PCG My(f2Cc\h)| 4 4 4 4 5|7 7 1 1 7
PCG My@cy |11 21 35 62 116]14 25 39 68 120
PCG Mysy ||'s 8 7 6 6 |11 11 11 10 10
Table 6: f(t) = fs(el!) with s € {1,4} (¢t € [-m, 7))
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