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Abstract

In this paper� we construct new ��circulant preconditioners for non�Hermitian

Toeplitz systems� where we allow the generating function of the sequence of

Toeplitz matrices to have zeros on the unit circle�

We prove that the eigenvalues of the preconditioned normal equation are clus�

tered at � and that for �N�N��Toeplitz matrices with spectral condition number

O�N�� the corresponding PCG method requires at most O�N log�N� arithmeti�

cal operations� If the generating function of the Toeplitz sequence is a rational

function then we show that our preconditioned original equation has only a �xed

number of eigenvalues which are not equal to � such that preconditioned GMRES
needs only a constant number of iteration steps independent of the dimension of

the problem�

Numerical tests are presented with PCG applied to the normal equation� GM�

RES� CGS and BICGSTAB� In particular� we apply our preconditioners to com�

pute the stationary probability distribution vector of Markovian queuing models

with batch arrival�
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� Introduction

Let C�� denote the space of ���periodic continuous functions and let W be the Wiener
algebra�
We are concerned with the solution of non�Hermitian Toeplitz systems

AN�f�x � b �����

arising from a generating function f � W with a �nite number of zeros� i�e�

AN �f� �� �aj�k�f��
N��
j�k�� �

ak�f� ��
�

��

Z �

��

f�t�eikt dt �

We are interested in iterative solution methods� more precisely in Krylov space methods�
These methods require in each iteration step only multiplications of AN�f� with vec�
tors and since AN�f� is Toeplitz these multiplications can be computed in O�N logN�
arithmetical operations by using fast Fourier transforms� However� in order to keep
the number of iterations small� iterative methods must be applied with suitable pre�
conditioning� in general� The construction of �good� preconditioners is the aim of this
paper�
Although there exists a rich literature on Hermitian Toeplitz systems �see ��� and the
references therein�� only few papers consider the non�Hermitian case �	� 
� �� �� ����
The papers �
� �� �� ��� construct preconditioners only for generating functions f with
strictly positive absolute value� i�e� jf j � c � �� In �
�� the authors suggested the use
of optimal circulant preconditionersMN of AN�f� and to solve the normal equation

�M��
N AN�f��

�M��
N AN�f�x � �M��

N AN�f��
�M��

N b

by the CG method� Here A� denotes the transposed complex conjugate matrix of
A� In ��� and ����� � �preconditioners depending on jf j� and optimal trigonometric
preconditioners of AN�f�

�AN�f�� respectively� were proposed for preconditioning of
the normal equation

A�

N�f�AN�f�x � A�

N�f�b � �����

The paper ��� contains interesting results for Strang preconditioners and for four other
special preconditioners for the case that the generating function f � � is a rational
function�
The only paper� where generating functions with zeros were considered� is �	�� Here the
authors suggested preconditionersMN which are products of banded Toeplitz matrices
and optimal circulant matrices and examine the distribution of the singular values of
the preconditioned matricesM��

N AN �f�� Unfortunately� it is not clear how the number
of iteration steps of the preconditioned CGS method ���� used in their numerical tests
depends on this distribution of the singular values�

�



In this paper� we introduce circulant� respectively ��circulant preconditioners related
to jf j� for the normal equation ����� even if f � W has zeros� These preconditioners
can be applied with a fewer amount of arithmetical operations than the combined
preconditioners in �	�� We show that the singular values of the preconditioned matrix
are clustered at � and that in case if the spectral condition number of AN�f� is O�N��
the PCG method applied to ����� converges in O�logN� iteration steps�
We are also interested in Krylov space methods like GMRES or BICGSTAB which do
not require the translation of ����� to the normal equation� Here we suggest circulant�
respectively ��circulant preconditioners related to f � Unfortunately� the convergence of
these methods does no longer depend on the singular values but on the eigenvalues of
the preconditioned system� We can not prove clustering results for arbitrary generating
functions f � W� However� for rational functions f � we show that the preconditioned
matrices have only a �nite �independent of N� number of eigenvalues which are not
equal to � such that preconditioned GMRES converges in a �nite number of steps in�
dependent of the dimension of the problem�

This paper is organized as follows� In Section �� we introduce our circulant� respec�
tively ��circulant preconditioners and prove corresponding clustering results� Section
	 modi�es these results for trigonometric preconditioners� Finally� Section � contains
numerical examples for various iterative methods and preconditioners� In particular�
we apply our preconditioners to the queueing network problem with batch arrivals ex�
amined in �	��

� ��circulant preconditions

In order to prove our main result in Theorem ��
 we need a couple of preliminary
lemmata� In the following we denote by RN�m� arbitrary �N�N��matrices of rank at
most m�

Lemma ��� Let f � W� Then� for any � � � and N su�ciently large� there exists

M � M��� independent of N such that

A�

N�f�AN �f� � AN�jf j�� �UN �RN�M��

where kUNk� � ��

To be careful with respect to our setting� we notice the short proof which in general
follows the lines of ����

Proof� Let

a� �� �a�� a�� � � � � aN���
� � a� �� ��� �a��� � � � � �a��N����

��

�a� �� ��� �aN��� � � � � �a��
� � �a� �� ��� a��N���� � � � � a���

� �

where y� denotes the transposed vector of y and let L�y� be the lower triangular
Toeplitz matrix with �rst column y� Then AN�f� � L�a�� � L

��a�� and we obtain

	



by straightforward computation that

A�

N�f�AN�f� � L��a��L
��a�� �L�a��L�a�� �L

��a��L�a�� �L��a��L
���a��

�L�a��L
��a�� �L

���a��L��a��� L��a��L���a��� L���a��L��a��
� AN�jSNf j��� L��a��L���a���L���a��L��a��
� AN�jf j���AN�jSNf j� � jf �j��L��a��L���a���L���a��L��a������	�

where

�SNf��t� ��
N��X

k���N���

ake
ikt�

Since f � W� the Fourier sums SNf converge uniformly to f � i�e� for any �� � � there
exists �M���� such that

jSNf � f j � �� for all N � �M�����

This implies that for any � � � there exists M���� such that��jSNf j� � jf j��� � �		 for all N �M�����

Thus

kAN�jSNf j� � jf j��k� � �		� �����

Further� since f � W� for any � � � there exists M �M��� � M���� such that

max

�
N��X

k��M��

jakj�
N��X

k��M��

jakj
�
�
r

�

	
for all N �M���� ���
�

Now we split the triangular Toeplitz matrices in ���	� into banded matrices and matrices
of rank bM	�c� i�e�

L��a�� � B� �R� � L��a�� � B� �R� � �����

where

B� �� L ���� �aN��� � � � � �aM���o
�

M�
�� � R� �� L

�
�o�N�M � �aM � � � � � �a��

�
�
�

B� �� L
�
��� a��N���� � � � � a��M����o

�

M�
�
�
� R� �� L

�
�o�N�M � a M � � � � � a ��

�
�

with zero vectors o�M of length bM	�c and obtain

L��a��L
���a�� �L

���a��L��a�� � B�B
�

� �B�

�
B� � L��a��R

�

� �R�B
�

�

� L���a��R� �R
�

�
B��

Now we have by ���
� that

kB�B
�

� �B�

�
B�k� � kB�k�kB�

�k� � kB�

�
k�kB�k� � ��

	
�

�



while rank �L��a��R
�

��R�B
�

��L
���a��R��R

�

�
B�� �M � Together with ���	�� �����

and Weyl�s interlacing theorem �� p� ��� this yields the assertion�

For a function f and equispaced nodes

xN�l �� wN �
��l

N

�
l � �� � � � � N � ��wN �

�
��
��

N

		
�����

we introduce the ��circulant matrices �� �� eiNwN �

MN �f� ��WNFNDN�f�F
�

NW
�

N � ����

where

FN ��
�p
N
�e���ijk�N�N��j�k���WN �� diag�e�ikwN �N��k�� �DN �f� � diag�f�xN�l��

N��
l�� �

See ����� If wN � �� then MN�f� is a circulant matrix� If q is a trigonometric polyno�
mial� i�e�

q�t� �
s�X

k��s�

ak�q�e
ikt�

then� by ����� the matrices AN �q� andMN�q� are related by

AN�q� �MN�q��BN �q� �����

where BN�q� �� �bj�k�q��
N��
j�k�� is the Toeplitz matrix of rank s� � s� with

b��N�k��q� � eiNwNak�q� �k � �� � � � � s���
bN�k�q� � e�iNwNa�k�q� �k � �� � � � � s���
bk�q� � � otherwise�

Having Lemma ��� in mind� we propose the Hermitian ��circulant matrix MN �jf j��
as preconditioner for A�

N�f�AN �f�� If jf j � �� then MN�jf j�� is positive de�nite�
Further� by using Lemma ���� it is easy to prove the following lemma�

Lemma ��� Let f � W and let jf j � fmin � �� Then� for any � � � and N su�ciently

large�

MN �jf j����A�

N�f�AN �f� � IN �UN �RN �

where kUNk� � � and RN is a matrix of low rank independent of N �

Proof� By Lemma ��� and since kMN �jf j����k� � �	f �min� it remains to show that

MN�jf j����AN �jf j�� � IN �UN �RN

with low norm and low rank matrices UN and RN � respectively�






Since jf j� is continuous and jf j� � f �min � �� for any � � � there exists a trigonometric
polynomial of degree M � M��� such that

q � �

�
�f �min � jf j� � q �

�

�
�f �min� ������

Using this relation and the fact that 
min�MN �jf j��� � f �min� we conclude that for every
o �� u � CN

u�AN�q�u

u�MN�jf j��u � �

�
� � u�AN �jf j��u

u�MN�jf j��u � u�AN �q�u

u�MN �jf j��u �
�

�
�� ������

By ������ the right hand inequality can be written as

u�AN�jf j��u
u�MN�jf j��u � u�MN�q�u

u�MN�jf j��u �
u�BN�q�u

u�MN�jf j��u �
�

�
�

and further by ������ and de�nition ofMN as

u�AN �jf j��u
u�MN�jf j��u � � � ��

u�BN �q�u

u�MN�jf j��u �

Handling the left�hand inequality of ������ in the same way and applying Weyl�s inter�
lacing theorem� we obtain the assertion�

The more interesting case even for practical purposes appears if we allow f to have
zeros� In the following� let f � C�� be given by

f � ps h� ������

where h � W with jhj � hmin � � and

ps�t� ��
mY
j��

�eit � eitj �sj

with pairwise distinct zeros tj � ���� �� and Pm
j�� sj � s� We choose our grid points

xN�l �l � �� � � � � N ��� for the construction of our ��circulant preconditionerMN �jf j��
such that

xN�l �� tj �j � �� � � � � m� l � �� � � � � N � ��� ����	�

See also Remark ���� ThenMN�jf j�� is positive de�nite� Moreover� we will prove that
the eigenvalues ofMN�jf j����A�

N�f�AN�f� have a proper cluster at �� Note that these
eigenvalues coincide with the square of singular values of AN�f�MN�f�

���

Theorem ��� Let f � W be given by ������� Let MN �f� be de�ned by ���� and

����	�� Then� for any � � � and N su�ciently large�

�AN�f�MN�f�
�����AN�f�MN�f�

��� � IN �UN �RN �

where kUNk� � � and RN is a matrix of low rank independent of N �

�



Proof� By straightforward calculation� we obtain for � � m � N � �� � � n � N � s

�AN�h�AN�ps��m�n �
sX

j��

�ps�jhk�j � �AN�hps��m�n�

i�e�

AN�hps� � AN�h�AN �ps� �CN�s�� ������

where CN�s� has only nonzero entries in its last s columns�
Then� by ����� and de�nition ofMN�f�

AN�f�MN�f�
�� � �AN�h�AN�ps� �CN�s��MN�f�

��

� �AN�h��MN�ps��BN�ps�� �CN�s��MN �f�
��

� AN�h�MN�h�
�� �RN �s� �

Thus

�AN�f�MN�f�
�����AN�f�MN�f�

��� � �AN �h�MN�h�
����AN �h�MN�h�

���RN��s��

The rest of the proof follows immediately by Lemma ��� and Weyl�s interlacing theo�
rem�

The proper clustering of the singular values of AN�f�MN�f�
�� leads to a superlinear

convergence of the CG�method applied to the normal equation ������ In order to esti�
mate the number of iteration steps we have to estimate the smallest singular values of
AN�f�MN�f�

��� Following the lines of �
�� we �rst prove the following lemma�

Lemma ��� Let f � W be given by ������� LetMN�f� be de�ned by ���� and ����	��
Then there exists c � � independent of N such that

kMN �f�AN�f�
��k� � c ���AN�f���

where ���AN�f�� �� kAN �f�
��k�kAN�f�k� denotes the spectral condition number of

AN�f��

Proof� Since

kMN�f�AN�f�
��k� � kAN�f�k��� kMN�f�k� ���AN�f��

and since kMN�f�k� is bounded from above� it remains to show that there exists c � �
independent of N such that

kAN�f�k� � c�

But this follows immediately from the fact that the singular values of AN�f� are dis�
tributed as jf j �see ���� �����

�



Theorem ��� Let f � W given by ������ and let ���AN �f�� � N��� � ��� Let

MN�jf j�� be de�ned by ���� and ����	�� Then CG applied to

MN�jf j����A�

N�f�AN�f�x �MN�jf j����A�

N�f�b �

requires O�logN� iteration steps to produce a solution of prescribed precision�

Proof� By a result of Axelsson ��� p� 
�	� and by Theorem ��	� the number of iterations
of the CG�method to obtain a solution of the above equation up to a prescribed precision
� is given by 
�

ln
�

�
�

qX
k��

ln
� � �

�k

�
	 ln

�
� �

�
���
���

����
�� ����

���

����
�

� p� q

where � � � � � � q are the smallest singular values of AN�f�MN�f�
�� which are not

inside our cluster ��� �� �� �� and where p� q � rank �RN �� Here � and RN are taken
with respect to Theorem ��	� By Lemma ��� we have that �� � kMN�f�AN�f�

��k��� �
cN��� and consequently

qX
k��

ln

�
� � �

�k

	
� �� q c lnN�

This yields the assertion�

By the following remark it is possible to neglect the grid condition ����	�� In particular
this implies that it is always possible to work with circulant instead of ��circulant
preconditioners� To keep proofs short we have introduced the more general ��circulant
preconditioners�

Remark ��� Let the grid points xN�l �l � �� � � � � N � �� be given by ����� where we
do not assume ����	�� We de�ne� similar as in ���� �MN�f� by

�MN�f� ��WNFNdiag�f��xl��
N��
l�� F

�

NW
�

N � ����
�

�xl ��

�
xl if xl �� tj �j � �� � � � � m� �
x�l otherwise�

where �l � f�� � � � � N � �g is the next higher index to l such that jf�x�l�j � �� For N
large enough we can simply choose �l � l � �modN � Then� since by construction

MN�f� � �MN �f� �RN�m� ������

it is easy to check that the above theorems remain valid with a small �xed number of
more outlying eigenvalues� In particular� if we choose xN�l �� ��l	N �l � �� � � � � N � ��
we obtain circulant preconditioners �MN �f��





Beyond application of PCG to the normal equation ����� we can use other iterative
methods like GMRES and BICGSTAB for the solution of ������ These methods avoid
the translation of the original system to the normal equation� However� by Remark ����
the arithmetical complexity per iteration step of BICGSTAB is �nearly the same� as
the arithmetical complexity of CG applied to the normal equation�
As preconditioner we suggestMN�f�� respectively �MN�f� here� The numerical results
concerning the number of iteration steps of preconditioned GMRES and BICGSTAB
are very good� Unfortunately� the number of iterations does no longer depend on the
distribution of the singular values of the preconditioned matrix but on its eigenvalues�
For arbitrary f � C�� of the form ������ we were not able to prove properties concern�
ing the distribution of the eigenvalues of AN�f�MN�f�

��� But for special generating
functions� namely rational functions� we obtain the following result �see also ������

Theorem ��	 Let f be a rational function of order �s�� s�� �s�s� �� �� given by

f�z� �
p�z�

q�z�
�

p� � p�z � � � �� ps�z
s�

q� � q�z � � � �� qs�z
s�

�

De�ne MN�f� by ���� with grid points satisfying ����	� if f�eitj � � � �j � �� � � � � m��
Then

AN �f�MN �f�
�� � IN �RN�max fs�� s�g� �

Proof� By ������ ������ and de�nition ofMN �f�� we obtain

AN�f�MN�f�
�� � �AN

�
�

q

	
AN �p� �CN�s���M

��
N

�
p

q

	

� �AN

�
�

q

	
�MN�p��BN�p�� �C�s���M

��
N

�
p

q

	

� AN

�
�

q

	
M��

N

�
�

q

	
�RN�s��� ������

where only the last s� columns of RN�s�� are nonzero columns� Similar we obtain
by ������� ����� and de�nition ofMN�f�

IN � AN

�
�

q

	
AN�q� �CN �s��

� AN

�
�

q

	
�MN �q��BN�q�� �CN�s��

� AN

�
�

q

	
M��

N

�
�

q

	
�R�s�� � �����

where only the last s� columns of RN �s�� are nonzero columns� Now the assertion
follows by ������ and ������

By Remark ��� we can prove a similar result with respect to the preconditioner �MN�f��

�



Note that similar results concerning the number of outliers outside �� � �� � � �� were
obtained for the preconditioned matrices in ��� if jf j � �� The preconditioners in ��� do
not require the explicit knowledge of the generating function�

Let AN �f�MN �f�
�� � IN �RN�s�� By ���� p� ��
�� the residual

r�k� �� b� �IN �RN �s��y
�k�

of the k�th iteration of GMRES applied to the preconditioned system can be estimated
by

jjr�k�jj�
jjr���jj� � min

p�	�
k

jjp�IN �RN �s��jj� �

where ��
k denotes the space of polynomials of degree � k with p��� � �� Assume

that RN�s� has the pairwise distinct nonzero eigenvalues 
�� � � � � 
q with multiplicities
n�� � � � � nq� where n� � � � �� nq � s� Let

RN �X diag��J���� � � � � �J��m� � � � � � �J q��� � � � � �J q�mq �oN�s�X
��

with �J j�k � C nj�k �nj�k and nonincreasing sizes nj�k ful�lling nj��� � � ��nj�mj
� nj� be the

decomposition of RN into Jordan blocks� Then

IN �RN�s� � X diag�J���� � � � �J q�mq � IN�s�X
�� � J j�k �� Inj�k �

�J j�k �

p�IN �RN�s�� � X diag�p�J����� � � � � � � � � p�Jq�mq�� p�IN�s��X
�� � ������

where by ��� p� 

��

p�J j�k� �

�
BBBBBBB�

p�
j � �� p����
j � �� � � � � � � p
�nj�k�����j���

�nj�k���


� p�
j � ��
� � � � � � ���

���
���

� � � � � �
���

���
���

���
� � � p����
j � ��

� � � � � � � � � � p�
j � ��

�
CCCCCCCA

� ������

Choosing p � ��
s�� as

p�x� �� ��� x�

qY
j��

�
�� x


j � �

	nj��

�
j �� ��� �

we see by ������ and ������ that p�IN �RN�s�� becomes zero� Consequently� GMRES
terminates after at most s�� steps� Applied to our setting this means by Theorem ���
that GMRES requires at most � � maxfs�� s�g iteration steps�
If we replace the ��circulant preconditioner MN�f� by the circulant preconditioner
�MN�f� the number of GMRES steps may increase at most to � � maxfs�� s�g�m�

��



� Trigonometric preconditioners

Since the function jf j� is even� the matrix AN�jf j�� is symmetric� This suggests the
application of so�called trigonometric preconditioners� These are matrices which are
diagonalizable by trigonometric transforms� In practice� four discrete sine transforms
�DST I � IV� and four discrete cosine transforms �DCT I � IV� were used �see ������
Any of these eight trigonometric transforms can be realized with O�N logN� arith�
metical operations� Likewise� we can de�ne preconditioners with respect to any of
these transforms�
In this paper� we restrict our attention to the so�called discrete cosine transform of type
II �DCT�II� and discrete sine transform of type II �DST�II�� which are determined by
the following transform matrices�

DCT�II � CII
N ��

�
�

N

	��� �
�Nj cos

j��k � ���

�N

	N��

j�k��

� R
N�N �

DST�II � SII
N ��

�
�

N

	��� �
�Nj�� sin

�j � ����k � ���

�N

	N��

j�k��

� R
N�N �

where �Nk �� ������k � �� N� and �Nk �� � �k � �� � � � � N � ��� For ����� we propose the
preconditioners

DCT� II � �MN�jf j��CII
N � �� �CII

N �
T diag �jf��xN�l�j��N��l�� CII

N �

DST� II � �MN�jf j��SII
N � �� �SII

N �
T diag �jf��xN�l�j��Nl�� SII

N �

�	����

where

�xN�l ��

�
l�
N

if l�
N
�� tj �j � �� � � � � m��

�l�
N

otherwise

and where �l � f�� � � � � N � �g is the next higher index to l such that jf�xN�l�j � �� See
��	��
Then we can prove in a completely similar way as in Section � the following

Theorem ��� Let f � W given by ������ and let ���AN�f�� � N� �� � ��� Then CG

applied to

M��
N �jf j��ON�A

�

N �f�AN �f�x �M��
N �jf j��ON �A

�

N�f� b �	����

with ON � fCII
N �S

II
N g requires O�logN� iteration steps to produce a solution of pre�

scribed precision�

� Numerical results and an application to queueing

networks

In this section� we test our ��circulant and trigonometric preconditioners on a SGI O�
work station� As transform length we chose N � �n and as right�hand side b of �����

��



the vector consisting of N entries ���� The iterative methods started with the zero
vector and stopped if kr�j�k�	kr���k� � ����� where r�j� denotes the residual vector
after j iterations�
We compare four di erent iterative methods� We apply CGS� BICGSTAB and restarted
GMRES���� to

�MN�f�
��AN�f�x � �MN�f�

�� b

with circulant preconditioner �MN�f��
Further we use CG for solving

M��
N A

�

N�f�AN�f�x �M��
N A

�

N �f�b �

where MN denotes one of the following preconditioners�

MN�jf j��FN� � �MN�jf j�� given by ����
��
�MN�jf j��CII

N � � �MN �jf j��SII
N � given in �	����

and the so�called optimal trigonometric preconditioners

MO
N�C

II
N � � M

O
N�S

II
N �

of A�

N�f�AN�f� introduced in �����
Although CGS is not very common� we have included this method to compare our
results with the results in �	�� In �	�� CGS is used without an analysis of the number
of necessary iteration steps� Moreover� the application of our circulant preconditioner
requires less arithmetical operations than the use of the preconditioner consisting of the
product of a banded Toeplitz and an optimal circulant matrix proposed in the above
paper�
The following remark shortly prescribes the e ort per iteration step of the proposed
methods�

Remark ��� Each iteration step of BICGSTAB and CGS requires two matrix vector
products with the Toeplitz matrix AN�f� and two matrix vector products with the
preconditioner�
In contrast� GMRES requires only one matrix vector products with the Toeplitz matrix
AN�f� and one matrix vector product with the preconditioner� But the number of
inner products grows linearly with the iteration number� up to the restart�
The PCG�method applied to the normal equation requires one matrix vector product
with both AN�f� and A

�

N�f�� and one matrix vector product with the preconditioner�

First we test Toeplitz systems with the following rational functions as generating func�
tions �cf� �	���

�i� f��z� ��
�z� � ��

�z � 
�
��z � �

�
�
�
�




�X
k��

�

��z�k
�
�	

��
�

�

	�
z � ��


�
z� � �


��

�X
k�

�
�z

	

	k

�

�ii� f��z� ��
�z � ����z � ���

�z � 
�
��z � �

�
�
� ��



�X
k��

�

��z�k
�




��
�
��

	�
z � ��


�
z� � �


��

�X
k�

�
�z
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�

��



�iii� f�z� ��
�z � ����z � ��

�z � 
�
��z � �

�
�
�
�

�

�X
k��

�

��z�k
�
��

��
� �

�
z � �


��

�X
k��

�
�z

	

	k

�

Tables ��	 present the number of iteration steps with di erent iterative methods and
di erent preconditioners�
The �rst row of each table contains the exponent n of the transform length N � �n�
The corresponding iterative method is listed in the �rst column and the preconditioner
in the second column of each table� The symbol � denotes that the method stopped
without converging to the desired tolerance in 
�� iteration steps or that the method
stagnated�
In addition to the above preconditioners we also test the ��circulant preconditioner
MN�f� � MN�f�FNWN � determined by ���� with wN � �

N
in connection with

GMRES����� Since N � �� is even� the grid points ful�ll ����	�� By Theorem ��� we
obtain for our three examples that
�i� � eigenvalues of AN�f�MN�f�

�� are not equal to �
�Here all these eigenvalues are equal to �!� "��
�ii� � eigenvalues of AN�f�MN�f�

�� are not equal to ��
�iii� 	 eigenvalues of AN�f�MN�f�

�� are not equal to ��
Indeed GMRES requires �� � and 	 iterations� respectively�
For the circulant preconditioner �MN�f� we have to replace those of the above grid
points which meet the zeros of the generating function� i�e� in �i� the points �� �	�� �� 	�	�
and in �ii���iii� the points �� ��
By Remark ��� this implies � � and 
 outliers in �i�� �ii� and �iii�� respectively� Our
numerical results con�rm our expectations�
The next examples with generating functions
�iv� f��t� �� it�
�v� f��t� �� t�eit

show that PCG applied to the normal equation can outperform the other 	 methods�
The function in f��z� � log�z� �z �� eit� in �iv� is of special interest� The �rst row and
column of AN�it� are given by�

����� �	����		� �	�� � � � � ����
N��

N

	

and �
�� ����	�� �		���	�� � � � � ����

N

N

	
�

respectively� Matrices of this kind arise in sinc�collocation methods for initial value
problems �see ����� Note further that �iv� is up to now the only example where the
optimal trigonometric preconditioner works well� too�
Finally� we apply our methods to Markovian queueing models with batch arrivals con�
sidered in �	�� The input of the queueing system will be an exogenous Poisson batch
arrival process with mean batch interarrival time 
��� By 
k � 
pk we denote the batch
arrival rate for batches of size k� where pk is the probability that the arrival batch size
is k� The number of servers in the queueing system is s� Finally we assume that the
service time of each server is independent of the others and is exponentially distributed

�	
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CGS IN �� �
 	�� # # # # # #

CGS �MN�f�FN�      # # # #

BICGSTAB �MN�f�FN� ��
 ��
 ��
 ��
 � � � � �

GMRES���� �MN�f�FN�         

GMRES���� MN�f�FNWN� 	 � � � � � � � �
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Table �� f�t� � it �t � ���� ���

with mean ���� The waiting room is of size N � s � � and the queueing discipline
is blocked�customers�cleared� If the arrival batch size is larger than the number of
waiting places left� then only part of the arrival batch will be accepted� the other cus�

�
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Table 
� f�t� � t�eit �t � ���� ���

tomers will be treated as over$ows and will be cleared from the system� This kind of
queueing system occurs in many applications� such as telecommunication networks ����
and loading dock models ��
��
By �	�� the probability distribution vector of the queueing system is given by the solution
of a system of linear equations

�AN�f� �RN�s��x � ��� � � � � �� s��� � �����

where AN �f� denotes the lower Hessenberg Toeplitz matrix with generating function

f�z� �� �s��
z
� 
� s��

�X
k��


k z
k �z �� eit� �

Clearly� our preconditioners Mn�f� also lead to a clustering of the singular values of
MN�f�

���AN�f� �RN�s���
As examples we choose s � f�� �g� 
 � �� � � s and 
k � �k �cf� �	��� In this case

f�z� � f��z� ��
�z � ����z � s� �z � �s��

z�z � ��
�

By Theorem ���� the matrices MN �f�
���AN�f� �RN �s�� have only 	� respectively �

eigenvalues which are not equal to �� The numerical results for f��z� are reported in
Table ��
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