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Abstract

Least squares estimations have been used extensively in many applications� e�g�

system identi�cation and signal prediction� When the stochastic process is station�

ary� the least squares estimators can be found by solving a Toeplitz or near�Toeplitz

matrix system depending on the knowledge of the data statistics� In this paper� we

employ the preconditioned conjugate gradient method with circulant precondition�

ers to solve such systems� Our proposed circulant preconditioners are derived from

the spectral property of the given stationary process� In the case where the spectral

density function s��� of the process is known� we prove that if s��� is a positive

continuous function� then the spectrum of the preconditioned system will be clus�

tered around � and the method converges superlinearly� However� if the statistics of

the process is unknown� then we prove that with probability �� the spectrum of the
preconditioned system is still clustered around � provided that large data samples

are taken� For �nite impulse response �FIR� system identi�cation problems� our

numerical results show that an n�th order least squares estimators can usually be

obtained in O�n logn� operations when O�n� data samples are used�
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� Introduction

��� Background

Least squares estimations have been used extensively in a wide variety of scienti�c appli�
cations� for instance equalizations �
� p�
��� system identi�cations ����� adaptive signal
processing �
� p���� and speech processing �
� p���� In these applications� we usually
need to estimate the transmitted signal from a sequence of received signal samples or to
model an unknown system by using a linear system model�
To present the problem properly� let us introduce some terminologies used in signal

processing� Let xi be a discrete�time stationary zero�mean complex�valued process �see
Fuller �
�� pp�
��

� for de�nition�� A linear predictor of order n is of the form

�xi �
nX

k��

bkxi�k

where �xi is the predicted value of xi based on the data fxkgi�nk�i�� and fbkgnk�� are the
predictor coe�cients� The di�erence between the actual value xi of the process and the
predicted value �xi is called the prediction error of order n� Since we are interested in
predicting the current value of the process based on the previous measurements� the
predictor coe�cients fbigni�� should be chosen to make the prediction error as small as
possible�
Usually the predictor coe�cients are determined by minimizing the mean square error�

i�e� minimizing the prediction error in the least squares sense� The optimal least squares
predictor coe�cients are then given by the solution of the linear system of equations

Rnb � r� �
�

see Giordano and Hsu �
� pp��
���� Here Rn is an n�by�n Hermitian Toeplitz matrix
given by

Rn �

�
�������

r� �r� � � � �rn�� �rn��

r� r� �r�
� � � �rn��

��� r� r�
� � �

���

rn��
� � � � � � � � � �r�

rn�� rn�� � � � r� r�

�
�������
�

and b and r are vectors of the form �b�� b�� � � � � bn�T and �r�� r�� � � � � rn�T � The entries rj
are the autocovariances of the discrete�time stationary process and are given by

rj � E �xi�xi�j�

�



where E is the expectation operator�
The matrix Rn is called the covariance matrix of the stationary process and the

Toeplitz system �
� is commonly called the Yule�Walker equation� see Yule ���� We
note that if the second�order statistics of the process is known� i�e� the autocovariances rj
of the stationary process are given� then the predictor coe�cients fbkgnk�� can be found
by solving �
�� Several direct methods ���� � have been derived to solve such systems
and their complexities vary from O�n�� to O�n log� n� operations�
We note that in practical cases� no prior knowledge is usually available on the auto�

covariances of the process� If M data samples have been taken� then all the information
we have is contained in the �nite number of data points fxkgMk��� In this case� we can
still formulate a well�de�ned least squares prediction problem by estimating the autoco�
variances from the data samples fxkgMk�� with various types of windowing methods� such
as the correlation� covariance� pre�windowed and post�windowed methods� see for instance
Giordano and Hsu �
� pp��	����� The least squares estimators can then be found by
solving the n�vector b in

min jjTb� yjj�� ���

Here y is an M �vector� jj � jj� denotes the usual Euclidean norm and T is an M �by�n
complex Toeplitz matrix with full column rank n� obtained by applying various types of
windowing methods on the data samples fxkgMk���
The solution b of ��� can be obtained by solving the normal equation

�T �T �b � T �y� ��

We note that if the correlation method is employed� the normal matrix T �T is Toeplitz�
The other three windowing methods will lead to non�Toeplitz normal matrix T �T � How�
ever� by exploiting the structure of T �T � some recursive algorithms of complexity O�M��
have been developed� see Marple ����� In addition to normal equation approach� orthogo�
nalization schemes of complexity O�Mn� have also been proposed� see for instance Itakura
and Saito �
��� Lee et� al� ��
�� Cybenko �
�� and Qiao �����

��� Iterative Methods For Toeplitz Systems

More recently� the use of preconditioned conjugate gradient method as an iterative method
for solving Toeplitz systems Anu � z has been gaining attentions� The idea is to use
circulant matrices Sn to precondition Toeplitz systems so as to speed up the convergence
rate of the method� see Strang �
�� That means� instead of solving the original Toeplitz
system� we solve the preconditioned system

S��n Anu � S��n z





by the conjugate gradient method�
Since circulant matrices can always be diagonalized by the Fourier matrix� see Davis

�

� p����� the matrix�vector multiplicationSnv can be computed easily by the Fast Fourier
Transforms �FFTs� in O�n logn� operations� For Anv� it can also be computed by FFTs in
O�n logn� operations by �rst embedding An into a �n�by��n circulant matrix� see Strang
�
�� It follows that the operations per iteration is of order O�n logn�� The convergence
rate of the method has been analyzed by Chan and Strang �	�� They proved that if the
diagonals of the Toeplitz matrix An are Fourier coe�cients of a positive function in the
Wiener class� then the spectrum of the preconditioned system S��n An will be clustered
around 
 for large n and the method will converge superlinearly� More precisely� for all
� � �� there exists a constant c��� � � such that the error vector ej of the preconditioned
conjugate gradient method at the jth iteration satis�es

jjejjjS����
n AnS

����
n

� c����jjje�jjS����
n AnS

����
n

when n is su�ciently large� Here jjvjj�
S
����
n AnS

����
n

� v�S
����
n AnS

����
n v� Hence the com�

plexity of solving a large class of Toeplitz systems can be reduced to O�n logn� operations�
We remark that circulant approximations to Toeplitz matrices have been considered

and used for some time in image processing �e�g� ����� signal processing �e�g� ���� and
��� pp��	����� and time series analysis �e�g� ��� pp�
��

� and ������ Besides Strang�s
circulant preconditioner Sn� several other successful circulant preconditioners have been
proposed and analyzed� see ��� 
�� 
�� �� �� Recently� the use of circulant preconditioners
for Toeplitz least squares problems was considered by Plemmons and Nagy ��� and Chan�
Nagy and Plemmons ���� They established formal convergence results for the least squares
problems and derived some applications in image processing� We remark however that
our circulant preconditioner is di�erent from that presented in ��� ���

��� Outline

In this paper� we use the preconditioned conjugate gradient method with circulant precon�
ditioners to solve the systems �
� and ��� For the case of known statistics� our proposed
circulant preconditioners are constructed from the spectral density functions of the given
discrete�time stationary processes� Using results in ��� �� straightforwardly� we show that
the spectrum of the preconditioned matrix is clustered around 
� Hence if our method is
used to solve the Yule�Walker equation �
�� then the convergence rate will be superlinear�
For the case of unknown statistics� only a �nite number of data measurements from the

random process are provided and the convergence analysis must therefore be considered
probabilistically� The �rst thing we do then is to estimate the autocovariances of the
given process� Four di�erent windowing methods for estimating these autocovariances

�



are introduced� Our circulant preconditioner Cn is constructed from these estimates and
can be generated in O�M logn� operations where M is the number of data measurements
taken� We prove that if the underlying spectral density function of the stationary process is
positive and in the Wiener class� then our circulant preconditioner will be positive de�nite
and its smallest eigenvalue will be uniformly bounded away from zero with probability

� provided that su�ciently large number of data samples are taken� Under the same
assumptions� we also prove that the spectrum of the preconditioned matrix C��

n �T
�T � is

clustered around 
 with probability 
� Thus� when we applied conjugate gradient method
to the preconditioned system� the method converges superlinearly with probability 
�
As for the cost of our method� since the data matrices T is an M �by�n rectangular

Toeplitz matrix� the normal equation and the circulant preconditioner can be formed in
O�M logn� operations� Once they are formed� the cost per iteration of the preconditioned
conjugate gradient method will be O�n logn� operations� Therefore the total work of
obtaining the predictor coe�cients to a given accuracy is of order O��M � n� logn��
The outline of the paper is as follows� In x�� we recall some useful results in iterative

method for solving Toeplitz systems and apply them to the case where the second�order
statistics are known� In x� we consider processes with unknown statistics� We �rst
formulate the problem for �nding the predictor coe�cients as a least squares problem�
Then we introduce our circulant preconditioner and analyze the convergence rate of our
method probabilistically� In x�� numerical experiments are performed for processes with
known and unknown statistics� Speci�cally� we test the performance of our method for
the �nite impulse response �FIR� system identi�cation� Finally� concluding remarks are
given in x	�

� Results For Known Statistics

In this section� we consider discrete�time stationary process with known second�order
statistics� i�e� known autocovariances� In this deterministic case� we can solve the Toeplitz
system �
� to obtain the predictor coe�cients fbkgnk��� The convergence rate of the method
can be analyzed straightforwardly as in ��� �� as we will now show�
To begin with� let the n�by�n Toeplitz matrices Rn in �
� be generated by a ���

periodic continuous function f de�ned on ���� ��� i�e� the �j� ��th entry of Rn is given by
the �j � ��th Fourier coe�cient of f �

rj�� �



��

Z �

��

f���ei�j����d��

The function f is called the generating function of Rn� For simplicity� we will denote an
n�by�n Toeplitz matrix generated by a function f by the symbol An�f �� We note that if

	



f is real�valued� then An�f � is Hermitian and the spectrum 	�An�f �� of An�f � satis�es

	�An�f �� � �fmin� fmax�� �n � 
� ���

where fmin and fmax are the minimum and maximum values of f respectively� see Grenan�
der and Szeg�o �
	� pp����	�� In particular� if f is positive� then An�f � is positive de�nite�
For Toeplitz matrices generated from a function� there are many di�erent choices of

circulant preconditioners that can be constructed from its generating function� see Chan
and Yeung ���� In this paper� we only focus on T� Chan�s circulant preconditioner Cn�f �
which is de�ned to be the minimizer of jjQn�An�f �jjF over all circulant matrices Qn� see
���� Here jj � jjF denotes the Frobenius norm� The �j� ��th entry of Cn�f � is given by cj��
where

cj �

�
�n� j�rj � jrj�n

n
� � j 
 n�

cn�j � 
 �j 
 n�

Chan and Yeung ��� showed that Cn�f � is closely related to the Fej�er kernel Fn �see Walker
��� p���� for de�nition of Fej�er kernel�� Indeed� the eigenvalues �j�Cn�f �� of Cn�f � are
given by

�j�Cn�f �� � �Fn � f����j
n
�� � � j 
 n� �	�

where

�Fn � f���� � 


��

Z �

��

Fn�� � ��f���d��

One of the interesting spectral property of Cn�f � is that if An�f � is positive de�nite�
then Cn�f � is also positive de�nite� In fact� we have

�min�An�f �� � �min�Cn�f �� � �max�Cn�f �� � �max�An�f �� ���

where �min��� and �max��� denote the minimum and maximum eigenvalues respectively�
see Tyrtyshnikov ��� Combining ��� with ���� we see that if the function f is positive�
then jjC��

n �f �jj� is uniformly bounded� We remark that most of the other circulant pre�
conditioners do not satisfy ���� see Chan and Yeung ���� As for the performance of Cn�f �
as a preconditioner to An�f �� we have the following theorem�

Theorem � �Chan and Yeung ��	 Theorem �	Corollary 
�� Let f be a positive ���
periodic continuous function� Then for all � � �� there exist positive integers K and N
such that for all n � K� at most N eigenvalues of Cn�f ��An�f � and of C��

n �f �An�f �� In
have absolute value greater than ��

�



Thus the spectrum of C��
n �f �An�f � is clustered around 
 and therefore the conjugate

gradient method� when applied to the preconditioned system C��
n �f �An�f �u � z� will

converge superlinearly� see Chan and Yeung ����
We now apply the result above to the solution of �
�� We begin by noting that for

a discrete�time stationary process� if the autocovariances of the process are absolutely
summable� i�e�

P�
k��� jrkj 
	� then rk can be expressed in the form

rk �

Z �

��

s���eik�d�

where s���� called the spectral density function of the stationary process� is given by

s��� �



��

�X
k���

rke
�ik��

see ��� p�

��� We note that the covariance matrix Rn is a Toeplitz matrix generated by
s���� As examples� we consider the following stationary processes�


� Purely random process �White Noise� ���� p���� The process simply consists of a
sequence of uncorrelated random variables fvtg and the autocovariances are given
by

rk �

	
�� k � ��
�� otherwise�

where � is the variance of the random variable vt� The corresponding spectral
density function s��� is given by

s��� �
�

��
� �� 
 ���� ��� ���

Thus� the covariance matrix is a constant multiple of the identity matrix�

�� First order auto�regressive process AR��� ���� p����� The process is given by

xt � �xt�� � vt�

where fvtg is a white noise process with variance �� The autocovariances of the
process are given by

rk �
��jkj


� ��
� k � ���
���� � � � � ���

where j�j 
 
� The corresponding spectral density function s��� is given by

s��� �
�

���
� �� cos � � ���
� �� 
 ���� ���

�



and the covariance matrix is a scalar multiple of the Kar�Murdock Szeg�o matrix�
see Kac and Murdock �
���

� Second order auto�regressive process AR��� ���� p���
�� The process is given by

xt � ��xt�� � ��xt�� � vt�

where fvtg is a white noise process with variance �� The autocovariances of the
process are given by

rk �
��
� �����

jkj��
� � �
� �����

jkj��
� ��

��� � ����
� �������
� ������ � ��� � �����
� k � ���
���� � � � � ���

where �� � ���� � ��� and �� � ���� such that j��j 
 
 and j��j 
 
� The spectral
density function is given by

s��� �
�

����
 � ���� � � �� � ����
� ��� cos � � ��� cos� �� � �� 
 ���� ���

�� First order moving�average process MA��� ��� p�
�
�� The process is given by

xt � vt � �vt���

where j�j 
 
 and fvtg is a white noise process with variance �� The autocovari�
ances of the process are given by

rk �


�
�

��
 � ���� k � ��
��� k � 
�
�� otherwise�

We see that the covariance matrix is a tridiagonal Toeplitz matrix An�s� with

s��� �
�

��
�
 � �� cos � � ���� �� 
 ���� ���

If we assume that the spectral density function of the stationary process exists and
satis�es the hypothesis of Theorem 
� then the Yule�Walker equation �
� can be solved
in O�n logn� operations by using the preconditioned conjugate gradient method with
circulant preconditioner Cn�f �� More precisely� we have the following direct consequence
of Theorem 
�

�



Corollary � Let the spectral density function s��� of a discrete�time stationary process
be a positive ���periodic continuous function� Then for all � � �� there exist positive
integers K and N such that for n � K� at most N eigenvalues of In � C��

n �s�An�s� have
absolute value greater than ��

We remark that all the above results are derived deterministically� In the least squares
estimation algorithms discussed below� we deal with data samples from random processes
and the convergence rate will be considered in a probabilistic way�

� Least Square Solutions With Unknown Statistics

In this section� we consider the more practical case where no prior knowledge on the
autocovariances of the discrete�time stationary process is available� In this case� the
autocovariances are estimated from the �nite number of data samples fx�� x�� ���� xMg�
The usual approach is to formulate the prediction problem as a least square problem
by using various types of windowing methods� In x�
� we will consider four of these
windowing methods� The construction of our circulant preconditioner will be given in
x�� and the convergence rate will be analyzed in x��

��� Windowing Methods

Let fx�� � � � � xMg be the set of data samples taken� By minimizing the mean square error
over the available data� the least squares estimation of the predictor coe�cients fbkg can
be found by solving the least squares problem

min jjTwb� yjj�� �
��

Here y is a known M �vector and Tw is a data matrix� see Giordano and Hsu �
� pp�
�	����� The exact form of Tw depends on the assumptions we make to the data outside
our observation�

�W
� Correlation method assumes that data prior to k � � and after k � M are zero�
The corresponding data matrix is an �M �n� 
��by�n rectangular Toeplitz matrix of the

�



form

T� �

�
�������������������

x� � � � � �
���

� � � � � �
���

���
� � � �

xn � � � � � � x�
���

���
���

���
xM � � � � � � xM�n��

�
� � �

���
���

� � � � � �
���

� � � � � xM

�
�������������������

�

�W�� Covariance method makes no assumptions about the data when k � � or k � M �
The corresponding data matrix is an �M � n�
��by�n rectangular Toeplitz matrix given
by

T� �

�
����������

xn � � � � � � x�
���

� � �
���

���
� � �

���
��� xn
���

���
xM � � � � � � xM�n��

�
����������
�

�W� Pre�windowed method assumes that data prior to k � � are zero but makes no
assumptions about data after k �M � The �M � 
��by�n data matrix T� is given by

T� �

�
��������������

xn � � � � � � x�
���

���
���

���
xM � � � � � � xM�n��

�
� � �

���
���

� � �
� � �

���
���

� � � xM
� � � � � � � �

�
��������������
�

�W�� Post�windowed method assumes that data after k � M are zero but makes no


�



assumptions about data prior to k � �� Thus the �M � 
��by�n data matrix T	 is given
by

T	 �

�
��������������

� � � � � � � �

x�
� � �

���
���

� � � � � �
���

���
� � � �

xn � � � � � � x�
���

���
���

���
xM � � � � � � xM�n��

�
��������������
�

In all four cases� the least squares solutions to �
�� can be obtained by solving the
scaled normal equations




M
�T �wTw�b �




M
T �wy� w � 
� �� � �� �

�

We note that when employing method �W
�� the normal matrix �
M
�T �� T�� is a Hermi�

tian Toeplitz matrix and can be written in the form




M
�T �� T�� � An�g� �
��

where

g��� �
n��X

k���n���

�rke
�ik�� �� 
 ���� �� �
�

and

�rk �



M

M�jkjX
j��

xj�xj�jkj� �
��

In statistics literature� �rk is called an estimator of the autocovariance rk of the process�
When using the other windowing methods �W��� �W� and �W��� the normal matrices

can be written in the following forms�

For covariance method �W���




M
�T �� T�� � An�g�� A�

n�p�An�p�� A�
n�q�An�q�� �
	�







For pre�windowed method �W��




M
�T �� T�� � An�g�� A�

n�p�An�p�� �
��

For post�windowed method �W���




M
�T �	 T	� � An�g�� A�

n�q�An�q�� �
��

Here

p��� �
n��X
j��

xjp
M

e�ij�� �� 
 ���� ���

and

q��� �
n��X
j��

xM�j��p
M

eij�� �� 
 ���� ���

We note that An�p� and An�q� are lower and upper triangular Toeplitz matrices re�
spectively� As the product of a lower triangular Toeplitz matrix and an upper triangular
Toeplitz matrix is not Toeplitz in general� the normal matrices in these cases are non�
Toeplitz�

��� Construction of Circulant Preconditioner

Let us now generate our circulant preconditioner from the normal matrices �
M
�T �wTw�

where w � 
� ��  and �� As we can always pad zeros to the bottom rows of the data
matrices Tw� we assume here without loss of generality that we can partition Tw as

Tw �

�
����

T�w���
T�w���
���

T�w�m�

�
���� � �
��

where each T�w�j� is an n�by�n Toeplitz matrix and m is the number of blocks of n�by�n
Toeplitz matrices� Our preconditioner Cn�g� is taken to be the circulant approximation
of the Toeplitz part An�g� of the normal matrix

�
M
�T �wTw�� see �
��� �
	���
���

Recall that by using FFTs� the cost of matrix�vector multiplications involving the
matrix Tw� w � 
� �� � �� can be done in O�M logn� operations whereas those involving
An�p� and An�q� can be performed in O�n logn� operations� Hence the Toeplitz matrix
An�g� can be found in O�M logn� operations whereas Cn�g� can be found in O�n logn�


�



operations� Once the �rst column of An�g� has been computed and stored� the cost for each
iteration of the preconditioned conjugate gradient method will be of O�n logn� operations�
As for the storage� we need an M �vector to store the set of data samples fxkgMk�� and
�ve n�vectors in the conjugate gradient method� The diagonals of An�g� and the �rst
column of Cn�g� will require another two n�vectors� If the diagonals of An�p� and An�q�
are needed� extra two n�vectors will be required� Thus the overall storage requirement is
about O�M � n��
We remark that our circulant preconditioner is di�erent from that recently proposed

by Chan� Nagy and Plemmons for Toeplitz least squares problems ���� They basically take
the circulant approximation of each Toeplitz block T�w�j� in �
�� and then combine them
together to form a circulant preconditioner� The motivation behind our preconditioner is
that the Toeplitz matrix An�g� is the sample covariance matrix which intuitively should
be a good estimation to the covariance matrix Rn of the discrete�time stationary process�
provided that su�ciently large number of data samples are taken� Hence we choose to
approximate An�g� instead of T�w�j� by circulant preconditioners�
The analysis of the performance of Cn�g� will be given later� We �rst explain why we

choose the T� Chan circulant preconditioners Cn�g� instead of the others� We recall that
the eigenvalues of Cn�g� are given by �F � g����j�n�� see �	�� In the deterministic case�
Cn�f � is a good preconditioner for An�f � because Fn � f is a good approximation of f � see
Chan and Yeung ���� In the current stochastic case� the following Lemma can serve as a
motivation for choosing Cn�g��

Lemma � �Grenander and Rosenblatt ���	 pp����
�� Let the spectral density
function s��� of the discrete�time stationary process be real�valued with bounded second
derivative and g��� be given by ��	�� Then for any given � � �� there exists a positive
integer N such that for n � N �

PrfjjFn � g � sjj� 
 �g � 
� ��

provided that the data samples size M is su
ciently large enough �M � n�� Here jj � jj�
is the supremum norm�

The Lemma basically states that the convolution product Fn � g converges to the
spectral density function s��� in probability� Therefore� we expect Cn�g� to be a good
preconditioner for An�g��

��� Probabilistic Analysis of the Convergence Rate

As we deal with data samples from random processes� the convergence rate will be con�
sidered in a probabilistic way which is di�erent from the deterministic case discussed in






x�� We �rst make the following assumption �A� on the discrete�time stationary process
so that results of the convergence rate can be derived�

�A�� The underlying spectral density function s��� of the process is positive and in the
Wiener class� i�e� the autocovariances of the process are absolutely summable�

�X
k���

jrkj � � 
	� �
��

�A� The variances of the estimators �rk given in �
�� are bounded by

Var��rk� � �

M
� k � ���
���� � � � � ����

where � is a constant�

�A
� The stationary process has zero�mean� i�e� E�xi� � � � � for all i�

Some remarks on the assumptions�


� In time�series analysis� assumption �A�� is often valid� For example� the spectral
density functions of autoregressive�moving average �ARMA� processes are rational
functions ��� p�
�
�� The positiveness of the spectral density function can be guar�
anteed by the causality of the process ��� p��	� whereas the absolutely summability
of the autocovariances can be assured by the invertibility of the process ��� p�����

�� Assumption �A� is satis�ed when the stationary process is Gaussian �see Priestley
���� p�

� for de�nition�� In fact� in this case� the variances of the estimators �rk
are given by

Var��rk� �



M

M�k��X
j���M�k��k

�
� jjj� k

M
��r�j � rj�krj�k�� k � ���
���� � � � �

As the autocovariances of the process are absolutely summable� inequality ���� is
satis�ed�

� If the mean of the stationary process is not equal to zero� then we can consider the
stationary process fxi � �g instead� Even if � is unknown� we can estimate it by
the sample mean�


�



�� Under assumption �A
�� we have

E��rk� � �
� jkj
M
�rk� �k � �� ��
�

see Priestley ���� p���� Although the formula of E��rk� is slightly di�erent when
� is unknown� they are almost the same when a large number of data samples are
taken� see ���� p����

The following Lemma will be useful later in the analysis of the convergence rate of the
method�

Lemma  Let the discrete�time stationary process satisfy assumption ����� Then for any
� � ��

Prfj�rk � E��rk�j � �g � Var��rk�

��
� �

M��
�

Proof� The �rst inequality comes from Chebyshev�s inequality� see Fuller �
�� p�
�	� and
the second inequality is obtained by applying �����

Before going into the convergence analysis� we de�ne the function gE��� which is an
approximation to the function g��� in �
��

gE��� �
n��X

k���n���

E��rk�e�ik�� �� 
 ���� ��� ����

The following Lemma gives an estimate of the di�erence between gE and g in the supre�
mum norm�

Lemma 
 Let g and gE be given by ��	� and ���� respectively� Then

Prfjjg � gEjj� � �g � ��n�

M��
�

Proof� By using a Lemma in Fuller �
�� p�
���� we have

Prfjjg � gEjj� � �g � Prfjj
n��X

k���n���

��rk � E��rk��e�ik�jj� � �g

�
n��X

k���n���

Prfj�rk � E��rk�j � �

�n� 
g�

The result now follows by using Lemma ��


	




�
�� Correlation Windowing Method

In this subsection� we analyze the spectrum of the preconditioned matrix C��
n �g�An�g�

when the correlation windowing method �W
� is used� We �rst prove that the smallest
eigenvalue of An�g� is uniformly bounded away from zero with probability 
�

Theorem  Let the discrete�time stationary process satisfy assumption �A�� Then for
any given � � �� there exists a positive integer N such that for n � N �

Pr f�min�An�g�� is uniformly bounded away from zerog � 
� ��

provided that M � O�n���� with � � ��

Proof� We �rst write

An�g� � fAn�g�� An�gE�g� fAn�gE�� An�s�g � An�s��

By �A�� and ���� we have
�min�An�s�� � smin � �� ���

where smin is the minimum value of s� Therefore� it su�ces to estimate jjAn�g��An�gE�jj�
and jjAn�gE�� An�s�jj� respectively�
For the probabilistic part� i�e� the matrix An�g�� An�gE�� we note by ��� that

Prfjjg � gEjj� 

�

�
g � PrfjjAn�g�� An�gE�jj� 
 �

�
g � 
� ����

On the other hand� by Lemma ��

Prfjjg � gEjj� 

�

�
g � 
� ��n

�

M��
�

for su�ciently small � � �� Thus� it follows from ���� that

PrfjjAn�g�� An�gE�jj� 
 �

�
g � 
� �� ��	�

provided that M � O�n���� with � � ��
For the deterministic part� i�e� the matrix An�gE� � An�s�� we note by ���� ��
� and

���� that

jjAn�gE�� An�s�jj� � jjgE � sjj� �
n��X

k���n���

jkj
M
jrkj�

X
jkj�n

jrkj� ����


�



Using �
��� it follows that for any given � � �� there exist positive integers N� and
M� � N� such that X

jkj�N�

jrkj 
 �

�
����

and



M�

N���X
k���N����

jkjjrkj 
 �

�
� ����

Hence for all M � n � M�� by ���� and ����� we have

n��X
k���n���

jkj
M
jrkj 
 


M�

N���X
k���N����

jkjjrkj�
n��X
jkj�N�

jkj
M
jrkj 
 �

�
�

Putting this bound and ���� back into ����� we get

jjAn�gE�� An�s�jj� 
 �

�
� ����

The lemma now follows by combining ���� ��	�� ���� and using simple probability argu�
ments�

Combining Theorem � with ���� we immediately have the following corollary on the
smallest eigenvalue of Cn�g��

Corollary  Let the discrete�time stationary process satisfy assumption �A�� Then for
any given � � �� there exists a positive integer N such that for n � N �

Prf�min�Cn�g�� is uniformly bounded away from zerog � 
� ��

provided that M � O�n���� with � � ��

Next we prove the clustering property of the preconditioned matrices C��
n �g�An�g��

Theorem 
 Let the discrete�time stationary process satisfy assumption �A�� Then for
all � � �� there exist positive integers K and N such that for n � N �

Pr fat most K eigenvalues of Cn�g�� An�g� have absolute value greater than �g � 
� ��

provided that M � O�n���� with � � ��


�



Proof� We write

Cn�g�� An�g� � fCn�g�� Cn�s�g� fCn�s�� An�s�g� fAn�s�� An�g�g�
In view of Theorem 
� the eigenvalues of Cn�s��Tn�s� will be clustered around zero� Hence
by applying Cauchy�s interlace theorem �see Wilkinson �	� p�
���� it su�ces to prove
that jjCn�g� � Cn�s�jj� and jjAn�s� � An�g�jj� are very small with probability 
� For the
di�erence An�s�� An�g�� we �rst write it as

An�s�� An�g� � fAn�s�� An�gE�g� fAn�gE�� An�g�g�
Then by using arguments similar to those used in Theorem �� we can prove that

PrfjjAn�s�� An�g�jj� 
 �g � 
� ��

provided that M � O�n���� with � � �� By ���� if jjAn�s� � An�g�jj� 
 �� then we have
jjCn�s� � Cn�g�jj� 
 �� Now the theorem follows by using simple probability arguments�

Combining Corollary � and Theorem � we have the following main theorem about
the spectra of the preconditioned system�

Theorem � Let the discrete�time stationary process satisfy assumption �A�� Then for
any given � � �� there exist positive integers K and N such that for n � N �

Pr fat most K eigenvalues of In � C��
n �g�An�g� have absolute value greater than �g
� 
� ��

provided that M � O�n���� with � � ��

Proof� Let us de�ne the following events�
E� � fat most K eigenvalues of Cn�g�� An�g� have absolute value greater than �g�
E� � f�min�Cn�g�� is uniformly bounded away from zerog� and
E� � fat most K eigenvalues of In � C��

n �g�An�g� have absolute value greater than �g�
By Theorem  and Corollary �� we see that

PrfE� and E�g � PrfE�g� PrfE�g � PrfE�orE�g � 
� ���
Since events E� and E� together imply E�� the theorem follows�

Using Theorem �� we can easily show that the conjugate gradient method� when ap�
plied to the preconditioned system C��

n �g�An�g�� converges superlinearly with probability

 provided that M � O�n���� with � � �� For details of the proof of the superlinearly
convergence rate� see Chan and Strang �	��


�




�
� Other Windowing Methods

To derive the convergence rate for other windowing methods� we �rst note the following
result�

Lemma � Let the variance of the discrete�time stationary process be equal to ��� i�e�
r� � ��� Then for any given � � �� there exists a positive integer N such that for n � N �

PrfjjAn�p�jj� � �g � 
� ��

provided that M � O�n���� with � � ��

Proof� By ���� jjAn�p�jj� � �jjpjj�� Thus
Prfjjpjj� � �g � PrfjjAn�p�jj� � �g � 
�

As the variance of xj is equal to ��� it follows by the Lemma in Fuller �
�� p�
��� and
Chebyshev�s inequality �
�� p�
�	� that

Prfjjpjj� � �g � Prfjj
n��X
j��

xjp
M

e�ij�jj� � �g �
n��X
j��

Prfj xjp
M
j � �

n
g � n���

M��
�

Hence� the result follows�

Following the arguments in Lemma �� we can establish similar results for the upper
triangular Toeplitz matrix An�q�� Thus� combining with Theorem  and using Cauchy�s
interlace theorem� we can prove that the spectra of the matrices

�i� Cn�g�� An�g�� A�
n�p�An�p�� A�

n�q�An�q� �covariance method �W����

�ii� Cn�g�� An�g�� A�
n�p�An�p� �pre�windowed method �W�� and

�iii� Cn�g�� An�g�� A�
n�q�An�q� �post�windowed method �W���

are clustered around zero with probability 
 provided that M � O�n���� with � � �� To
sum up� we have the following main result�

Theorem � Let the discrete�time stationary process satisfy assumption �A�� Then for
all � � � and for each w � 
� �� � �� there exist positive integers K and N such that for
n � N � the probability that at most K eigenvalues of

In � C��
n �g��




M
T �wTw�

have absolute value greater than � is greater than 
� �� provided that M � O�n���� with
� � ��

According to Theorem 	� the preconditioned conjugate gradient method with circulant
preconditioner Cn�g� is an e�cient algorithm for solving Toeplitz least�square equations
derived from di�erent kinds of windowing methods�


�



� Numerical Experiments

In this section� numerical experiments are performed to test the convergence performance
of the algorithm� Stationary processes with known or unknown second�order statistics �i�e�
autocovariances� are considered� All the computations are done by Matlab on a Sparc II
workstation at UCLA� In the numerical tests� we use the zero vector as our initial guess
and the stopping criterion is jjejjj��jje�jj� 
 
��
� where ej is the residual vector after j
iterations� In the tables below� In denotes no preconditioner was used whereas Cn signi�es
T� Chan circulant preconditioner was used�

��� Known Statistics

We test our method for �rst and second order autoregressive processes� i�e� AR�
� and
AR��� processes� Their autocovariances are given by ��� and ��� respectively� We solve
the corresponding Yule�Walker equation �
�� For each process� two sets of parameters
were tried� We note that the spectral density functions s��� of the processes are positive
and in the Wiener class� Table 
 gives the number of iterations required to solve �
��
From the table� we see that the number of iterations increases for the original matrices as
n increases� However� it stays almost the same for the preconditioned systems�

AR�
� process AR��� process
� � �� � � ��� �� � ��
� �� � ��	 �� � ���� �� � ��	

n In Cn In Cn In Cn In Cn

� � � � 	 � � � �

� 
� � 
� � 
	 � �
 


� 
� 	 �	 � �
 � � 
�
�� 
� � �� � �� 	 �� 



�� 
� � �
 � �� 	 
�
 �
�	� 
� � �	 � �� � 
�� �

Table 
� Number of iterations for AR�
� and AR��� process with known statistics�

��� Unknown Statistics

We illustrate the convergence rate of our method by using �nite impulse response �FIR�
system identi�cation as an example� FIR system identi�cation has wide applications in
engineering ���� ���� Figure 
 is a block diagram of an FIR system identi�cation model�
The input signal xk drives the unknown system to produce the output sequence yk� We
model the unknown system as an FIR �lter� If the unknown system is actually an FIR
system� then the model is exact�

��



In the tests� we formulate a well�de�ned least squares prediction problem by estimating
the autocovariances from the data samples with correlation and covariance windowing
methods� By solving the normal equations as discussed in x�
� the FIR system coe�cients
can be found� We remark that if the autocovariances and the cross�covariances of the input
process fxkg and the output process fykg are known beforehand� then we are just simply
solving a system of equations similar to �
�� see Marple �����

�

�

xk r
Unknown System

FIR System fbkgnk��

�

�
��
��P

� ek

�

�

yk

y
�

k

Figure 
� FIR System Identi�cation Model

In the numerical tests� we used Gaussian white noise �purely random process� and
colored noise �AR�
� and AR��� processes� with variance � equal to 
 as input processes�
The reference �unknown� system is an n�th order linear phase FIR �lter with uncorrelated
Gaussian white noise added� The �nite impulse response fhkgnk�� we used for the reference
system is

hk � 
�
� j�k � n� 
j
n� 
 �

We note that the shape of the FIR �lter is triangular� Di�erent variances of noise level
are used to test the performance of the preconditioned conjugate gradient algorithm� In
signal processing� the e�ect of the background noise to the signal is measured by the
signal�to�noise ratio �SNR� which is de�ned as

SNR � 
� log��


variance of the reference system output fykg

variance of the additive noise

�
�

In the tables below� m � M�n is the number of blocks of n�by�n Toeplitz matrices
in the matrix Tw �c�f� �
���� In Table �� we �rst use white noise as input process and
employ correlation windowing method to formulate the least square prediction problems�
Table � shows the average number of iterations �rounded to the nearest integer� of the
normal systems and of the preconditioned systems over 
�� runs of the algorithm� From
the numerical results� we see that the preconditioned systems converge very fast and the

�




number of iterations required for convergence are less than that of the normal systems�
However� the reduction of the number of iterations is not signi�cant when m is large� This
is because the spectral density function of the white noise process is a constant function�
see ���� Hence the number of iterations are almost the same for white noise input process
when m is large�

SNR�	� SNR��
n 
� � �� 
�� 
� � �� 
��
m In Cn In Cn In Cn In Cn In Cn In Cn In Cn In Cn

� 
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Table �� Average number of iterations for white noise input process when correlation
windowing method is employed�

Tables �� and 	�� show the average number of iterations over 
�� runs of the algo�
rithms when AR�
� �with � � ���� and AR��� �with �� � ��� and �� � ��	� are used as
the input processes respectively� We see that the preconditioned systems also converge
very fast and the reduction in number of iterations is much greater than in the case of
white noise input process�
In the proof of Lemma �� we need M to be su�ciently large in order to make the ��

norm of the matrices An�p� or An�q� as small as possible� The fact can be seen from the
numerical results in Tables � and � where the number of iterations of the preconditioned
systems are greater than the non�preconditioned one when m � �� However� when m � ��
the number of iterations of the preconditioned systems reduces signi�cantly� Finally� we
note that although the superlinear convergence rate is proved under the assumption that
M � O�n����� the numerical results show that the method indeed converges very fast
even when the number of data samples M is just of the order O�n��

��
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Table � Average number of iterations for AR�
� input process when correlation
windowing method is employed�
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Table �� Average number of iterations for AR�
� process when covariance windowing
method is employed�
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Table 	� Average number of iterations for AR��� process when correlation windowing
method is employed�
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Table �� Average number of iterations for AR��� process when covariance windowing
method is employed�

� Concluding Remarks

Recently� Plemmons ��	� proposed to use circulant preconditioner for the recursive �adap�
tive� least squares problems� We note that our algorithm is also suitable for such problems�
For a real�time application of identi�cation and recursive least squares computations� our
algorithm can be executed on a parallel machine with multiprocessors� We assign each
step of the algorithm to di�erent group of processors� The �rst group of processors is
responsible for the initialization of the data samples �i�e� to generate the right hand side
vector of the normal equations and the �rst column of the Toeplitz matrices An�g�� An�p��
An�q� and Cn�g��� The conjugate gradient iterations can be implemented on the second
group of processors�
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