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Abstract

We study the solution of n�by�n complex Toeplitz systems Anx � b

by the preconditioned conjugate gradient method� The precondi�

tioner Cn is the circulant matrix that minimizes kBn � AnkF over

all circulant matrices Bn� We prove that if the generating function

of An is a ���periodic continuous complex�valued function without

any zeros� then the spectrum of the normalized preconditioned ma�

trix �C��
n An�

��C��
n An� will be clustered around one� Hence we show

that if the condition number of An is of O�n��� the conjugate gradi�

ent method� when applied to solving the normalized preconditioned

system� converges in at most O�� logn 	 
� steps� Thus the total

complexity of the algorithm is O��n log� n	 n logn��

Abbreviated Title� Complex Toeplitz Systems�

Key Words� Toeplitz matrix� circulant matrix� preconditioned conjugate
gradient method� generating function�
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� Introduction�

In this paper� we discuss the solutions of n�by�n complex Toeplitz systems
Anx 	 b by the preconditioned conjugate gradient method� A matrix An 	

aj�k� is said to be Toeplitz if aj�k 	 aj�k� i�e� An is constant along its
diagonals� Toeplitz matrices occur in a variety of applications� especially
in signal processing and control theory� Existing direct methods for dealing
with them include the Levinson�Trench�Zohar O
n�� algorithms ���� and
a variety of O
n log� n� algorithms such as the one by Ammar and Gragg
���� The stability properties of these direct methods for symmetric positive
de�nite matrices are discussed in Bunch ���
An n�by�n matrix Bn is said to be circulant if it is Toeplitz and its diag�

onals bj satisfy bn�j 	 b�j for � � j � n� �� Circulant matrices can always
be diagonalized by a Fourier matrix� i�e�

Bn 	 Fn�nF
�

n � 
��

where �n is diagonal and

�Fn�jk 	
�p
n
e
���ijk

n � � � j� k � n�

see Davis ����� The idea of using the preconditioned conjugate gradient
method with circulant preconditionersBn for solving positive de�nite Toeplitz
systems was �rst proposed by Strang ����� Instead of solving Anx 	 b� we
solve the preconditioned system B��

n Anx 	 B��
n b by the conjugate gradient

method with Bn being a circulant matrix�
The number of operations per iteration in the preconditioned conjugate

gradient method depends mainly on the work of computing the matrix�vector
multiplication B��

n Any� see for instance Golub and van Loan ����� For any
vector y� since B��

n y 	 F �

n�
��
n Fny� the product B

��
n y can be found e��

ciently by the Fast Fourier Transform in O
n logn� operations� Likewise� the
product Any can also be computed by the Fast Fourier Transform by �rst
embedding An into a n�by�n circulant matrix� The multiplication thus
requires O
n log
n�� operations� It follows that the total operations per
iteration is of order O
n logn��
In order to compete with direct methods� the circulant matrix Bn should

be chosen such that the conjugate gradient method converges su�ciently





fast when applied to solving the preconditioned system B��
n Anx 	 B��

n b�
It is well�known that the method converges fast if B��

n An has a clustered
spectrum� i�e� B��

n An is of the form In � Un � Vn where In is the identity
matrix� Un is a matrix of low rank and Vn is a matrix of small �� norm�
Several circulant preconditioners have been proposed and analyzed� see

for instance� Chan and Strang ���� Chan ��� ��� Chan� Jin and Yeung ���� Ku
and Kuo ����� Tyrtyshinkov ��� and Huckle ����� The convergence rate anal�
ysis of these circulant preconditioners depends on an assumption that the
diagonals of the Toeplitz matrix An are Fourier coe�cients of a given func�
tion called the generating function� One typical convergence result is that if
the generating function is a positive ��periodic continuous real�valued func�
tion� then the spectrum of the preconditioned system C��

n An is clustered
around one� see Chan and Yeung ���� Here Cn is the T� Chan ��� circulant
preconditioner which is de�ned to be the minimizer of jjBn�AnjjF in Frobe�
nius norm over all circulant matrices Bn� It follows that the preconditioned
conjugate gradient method� when applied to solving the preconditioned sys�
tem� converges superlinearly� Hence the number of iterations required for
convergence is independent of the size of the matrix An� In particular� the
system Anx 	 b can be solved in O
n logn� operations�
The main aim of this paper is to study the solution of Toeplitz system

Anx 	 b for An generated by complex�valued functions� We note that such
An are in general complex non�Hermitian matrices whereas An generated
by real�valued functions are Hermitian Toeplitz matrices� Since An is not
positive�de�nite� the conjugate gradient method in general does not con�
verge when applied to the system Anx 	 b� Clearly one can consider the
normalized system A�

nAnx 	 A�

nb� but the numerical results in x� show that
the convergence rate is usually poor�
In this paper� we consider applying the conjugate gradient method to the

following normalized preconditioned system


C��
n An�

�
C��
n An�x 	 
C

��
n An�

�C��
n b�

We show that if the generating function of An is a ��periodic continuous
complex�valued function without any zeros� then the spectrum of the itera�
tion matrix 
C��

n An�
�
C��

n An� is clustered around one� From that we get a
bound on the convergence rate of the method that depends on the condition
number �
An� of An� More precisely� we show that if �
An� 	 O
n��� then

�



the number of iterations required for convergence is at most O
� logn� where
� 	 �� By noting that the number of operations per iteration in the conju�
gate gradient method is of O
n logn�� the total complexity of the algorithm is
therefore of O
n log� n�� In the case when � 	 �� i�e� An is well�conditioned�
the method converges in O
�� steps� Hence the complexity is reduced to
O
n logn��
We note that symmetric positive de�nite Toeplitz systems can be solved

in O
n log� n� operations by superfast direct Toeplitz solvers� see Ammar and
Gragg ��� for instance� However� these methods are in general not applicable
to complex non�Hermitian Toeplitz matrices� We remark that Ku and Kuo
���� have also considered solving non�symmetric Toeplitz matrix systems by
preconditioned conjugate gradient method� In their paper� An is assumed to
be generated by complex�valued rational function in the Wiener class which
happens to be a sub�class of the class of ��periodic continuous functions
considered in this paper�
Numerical examples in x� will show that the requirements on f � namely

that f has no zeros and �
An� 	 O
n�� are indispensible in order to get the
said convergence rate� In particular� this implies that circulant precondition�
ers cannot be used for inde�nite Toeplitz systems such as the one generated
by f

� 	 sin 
� We note however that in Chan ��� and Chan and Tang
����� we have proved that if f is nonnegative with only countable zeros� 
e�g�
f

� 	 sin� 
�� then band�Toeplitz preconditioners can be used to speed up
the convergence rate�
The outline of the paper is as follows� In x� we obtain bounds for the

spectra of An and Cn in terms of the generating function of An� In x�� we
show that the spectrum of 
C��

n An�
�
C��

n An� is clustered around �� In x��
we give the bound for the number of iterations required for convergence�
Finally� numerical examples and concluding remarks are given in x� and x�
respectively�

� The Spectra of An and Cn�

For simplicity� we denote by C�� the Banach space of all ��periodic continu�
ous complex�valued functions equipped with the supremum norm jj � jj�� For

�



all f � C��� let

ak 	
�

�

Z �

��

f

�e�ik�d
� k 	 ������� � � � �

be the Fourier coe�cients of f � Let An�f � be the n�by�n complex Toeplitz
matrix with the 
j� k�th entry given by aj�k� The function f is called the
generating function of the matrices An�f ��
We will use fR and fI to denote respectively the real and imaginary parts

of the function f � We remark that An�fR� and An�fI � are both Hermitian
matrices and

An�f � 	 An�fR� � iAn�fI �� 
�

The following Lemma gives the relation between jjf jj� and the �� norm of
An�f ��

Lemma � Let f � C��� Then we have

jjAn�f �jj� � jjf jj�� n 	 �� � � � � � 
��

Proof� Clearly fR and fI are continuous real�valued functions� Hence we
have

jjAn
fR�jj� � jjfRjj� and jjAn
fI�jj� � jjfI jj�� 
��

see for instance� Grenander and Sezg�o ����� Therefore� by 
�

jjAn�f �jj� � jjAn
fR�jj� � jjAn
fI�jj� � jjfRjj� � jjfIjj� � jjf jj�� �

Let Cn�f � be the n�by�n circulant preconditioner of An�f � as de�ned in
T� Chan ���� i�e� Cn�f � is the minimizer of jjAn�f ��BnjjF over all circulant
matrices Bn� We note that the 
j� ��th entry of Cn�f � is given by the diagonal
cj�� where

ck 	

�

n� k�ak � kak�n

n
� � k � n�

cn�k � � �k � n�

��

see Chan� Jin and Yeung ����
We now give a simple formula for the eigenvalues �j
Cn�f �� of Cn�f � in

terms of the Fej�er kernel

�Fk

� 	
�

k

�
sin
k

�

�

sin
�
�

�

��

� k 	 �� � � � � �

�



The following Lemma was proved in Chan and Yeung ���� for the case where
f is real�valued�

Lemma � Let f � C��� Then

�j
Cn�f �� 	
�

�

Z �

��

f
�� �Fn

�j

n
� ��d� � 
f � �Fn�


�j

n
�� � � j � n� 
��

Proof� By 
��� it is clear that

�j
Cn�f �� 	 �j
Cn�fR�� � i�j
Cn�fI ��� � � j � n�

Hence by noting that 
�� holds for real�valued functions� we have

�j
Cn�f �� 	
n

fR � ifI� � �Fn

o


�j

n
� 	 
f � �Fn�


�j

n
�� � � j � n� �

The following Lemma gives the bounds for jjCn�f �jj� and jjC��
n �f �jj��

Lemma 	 Let f � C��� Then we have

jjCn�f �jj� � jjf jj�� n 	 �� � � � � � 
��

If moreover f has no zeros� i�e�

jf jmin � min
��������

jf

�j 	 ��

then for all su�ciently large n� we also have

jjC��
n �f �jj� � jj

�

f
jj�� 
��

Proof� Since Cn�fR� and An�fR� are Hermitian� we have

jjCn�fR�jj� � jjAn�fR�jj��

see for instance� Chan� Jin and Yeung ���� Hence by 
�� we have

jjCn�fR�jj� � jjAn�fR�jj� � jjfRjj��

�



Similarly� we get
jjCn�fI �jj� � jjAn
fI�jj� � jjfIjj��

It follows that

jjCn�f �jj� � jjCn�fR�jj� � jjCn�fI �jj� � jjfRjj� � jjfI jj� � jjf jj��
To get the bound for jjC��

n �f �jj�� we note that by 
��� we have

min
j
j�j
Cn�f ��j 	 min

j
j
f � �Fn�


�j

n
�j

	 min
j
jf
�j

n
� � 
f � �Fn � f�


�j

n
�j

� jf jmin � jjf � �Fn � f jj�� � � j � n�

Since f � �Fn tends to f uniformly� see for instance Zygmund ���� we see that
for n su�ciently large�

min
j
j�j
Cn�f ��j � �


jf jmin� 
��

or

max
j

j�j
C��
n �f ��j �



jf jmin
	 jj �

f
jj��

By 
��� we see that

�j
C
���
n �f �C��

n �f �� 	 j�j
C��
n �f ��j�� � � j � n� 
���

Therefore we have

jjC��
n �f �jj� 	 max

j
j�j
C���

n �f �C��
n �f ��j��� � jj

�

f
jj�� �

� The Spectrum of the Iteration Matrix�

In this section� we show that the spectrum of the normalized preconditioned
matrix


C��
n �f �An�f ��

�
C��
n �f �An�f ��

is clustered around �� We �rst show that An�f ��Cn�f � can be written as the
sum of a low rank matrix and a small norm matrix�

�



Theorem � Let f � C��� Then for all  	 �� there exist N and M 	 ��
such that for all n 	 N �

An�f �� Cn�f � 	 Un�f � � Vn�f � 
���

where

rank Un�f � � M 
��

and

jjVn�f �jj� � � 
���

Proof� Let f � C��� Then for any  	 �� by Weierstrass theorem� there
exists a trigonometric polynomial

pM

� 	
MX

k��M

�ke
ik�

such that
kf � pMk� �  � 
���

For all n 	 M � we write

Cn�f �� An�f � 	 Cn�f � pM �� An�f � pM � � Cn�pM �� An�pM �

	 Cn�f � pM �� An�f � pM ��Wn � Un 
���

where by 
��� we see that Wn and Un are Toeplitz matrices given by�
������������

� �
n
��� � � � M

n
��M � � � � �

�
n
�� � �

n
���

� � � M
n
��M

� � �
���

� � � � � � �
M
n
�M

M
n
��M

�
� � � � � � � � � � � �

���
���

� � � M
n
�M

�
n
�� � �

n
���

� � � � � M
n
�M � � � �

n
�� �

�
�����������	


���

�



and �
��������

� � � � � n�M
n

�M � � � n��
n
��

���
� � � � � � � � �

���
� n�M

n
�M

n�M
n

��M �
���

� � � � � �
���

n��
n
��� � � � n�M

n
��M � � � � �

�
�������	


���

respectively� It is clear from 
��� that

rank Un � M � 
���

We will show that the �rst three terms in the right hand side of 
��� are
matrices of small norm� We note that by 
��� 
�� and 
����

jjCn�f � pM �� An�f � pM �jj� � jjCn�f � pM �jj� � jjAn�f � pM �jj�
� jjf � pM jj� � jjf � pM jj� � �� 
���

It remains to estimate jjWnjj�� For all jkj �M � we �rst note that

j�kj 	




 ��

Z �

��

pM
t�e
�iktdt






�





 ��
Z �

��


pM
t�� f
t��e�iktdt





 �




 ��

Z �

��

f
t�e�iktdt






� jjf � pM jj� � jjf jj� � � jjf jj��

Hence we see from 
��� that

kWnk� 	 kWnk�
	

M

n
j��M j� � � �� 

n
j���j� �

n
j���j

�
�

n
j��j� 

n
j��j� � � �� M

n
j�M j

� 

n

� �  � � � ��M�
 � jjf jj���

Therefore� we have

kWnk� � 
kWnk�kWnk����� � �

n
M
M � ��
 � jjf jj�� �

�



Thus if we let

N � maxfM
M � ��
� �
jjf jj�

�� Mg 	M
M � ��
� �

jjf jj�

��

then for all n � N � we have kWnk� � � Combining this estimate with 
���
and 
���� we see that for all n � N � Cn�f �� An�f � is the sum of a matrix of
�� norm less than � and a matrix of rank less than M � �

We now consider the spectrum of C��
n �f �An�f ��In where In is the n�by�n

identity matrix� Using 
���� 
�� and the fact that

C��
n �f �An�f �� In 	 C��

n �f �
An�f �� Cn�f �� 	 C��
n �f �Un�f � � C��

n �f �Vn�f ��

we have the following immediate Corollary�

Corollary � Let f � C��� If f has no zeros� then for all  	 �� there exist

N and M 	 �� such that for all n 	 N �

C��
n �f �An�f �� In 	 �Un�f � � �Vn�f � 
��

where rank �Un�f � � M and jj �Vn�f �jj� � �

We now show that the spectrum of the normalized preconditioned matrix


C��
n �f �An�f ��

�
C��
n �f �An�f ��

is clustered around ��

Theorem � Let f � C��� If f has no zeros� then for all  	 �� there exist N
and M 	 �� such that for all n 	 N � at most M eigenvalues of the matrix


C��
n �f �An�f ��

�
C��
n �f �An�f ��� In

have absolute values larger than �

Proof� By 
��� we have


C��
n �f �An�f ��

�
C��
n �f �An�f ��

	 
In � �Un�f � � �Vn�f ��
�
In � �Un�f � � �Vn�f ��

	 In � �Un�f � � �Vn�f �

��



where

�Un�f � 	 �Un�f �
�
In � �Un�f � � �Vn�f �� � 
In � �Vn�f �

�� �Un�f �

and
�Vn�f � 	 �Vn�f � � �Vn�f �

� � �Vn�f �
� �Vn�f ��

Then by Corollary �� we see that rank �Un�f � � �M and jj �Vn�f �jj� � �� Since
now we have


C��
n �f �An�f ��

�
C��
n �f �An�f ��� In 	 �Un�f � � �Vn�f �

and both �Un�f � and �Vn�f � are Hermitian� by applying Cauchy�s interlace
theorem� see Wilkinson ���� we conclude that at most �M eigenvalues of the
matrix


C��
n �f �An�f ��

�
C��
n �f �An�f ��� In

have absolute values larger than �� �

� Convergence Rate�

In this section� we analyze the convergence rate of the conjugate gradient
method when applied to solving the normalized preconditioned system


C��
n �f �An�f ��

�
C��
n �f �An�f ��x 	 
C

��
n �f �An�f ��

�C��
n �f �b� 
��

We show that the method converges in at most O
� logn � �� steps where
O
n�� is the condition number �
An�f �� of An�f �� We begin by deriving a
lower bound for the singular values of C��

n �f �An�f ��

Lemma 
 Let f � C��� If f has no zeros� then there exists a constant �c 	 �
such that for n su�ciently large� we have

jjAn�f �jj� 	 �c�
Hence we have

jjA��
n �f �Cn�f �jj� � jjCn�f �jj�

jjAn�f �jj��
An�f �� � c � �
An�f �� 
�

for some constant c 	 ��

��



Proof� By 
���� we have

A�

n�f �An�f � 	 C�

n�f �Cn�f � �Xn � Yn� 
��

where

Xn 	 Un�f �
�
Cn�f � � Un�f � � Vn�f �� � 
C

�

n�f � � V �

n �f ��Un�f �

and
Yn 	 C�

n�f �Vn�f � � V �

n �f �Cn�f � � V �

n �f �Vn�f ��

Let us analyze each term in the right hand side of 
��� By 
��� we see that
rank Xn � �M � By 
��� and 
��� we get

jjYnjj� � jjCn�f �jj�jjVn�f �jj� � jjVn�f �jj�� � �jjf jj� � ��

Hence for  small enough� we have

jjYnjj� � �
�
jf j�min�

Finally by 
�� and 
����

�j
C
�

n�f �Cn�f �� � �
�
jf j�min� � � j � n�

Thus by applying Cauchy�s interlace theorem to 
��� we conclude that at
most �M eigenvalues of A�

n�f �An�f � have values less than

�

�
jf j�min �

�

�
jf j�min 	

�

�
jf j�min�

Therefore

jjAn�f �jj�� 	 �max
A
�

n�f �An�f �� � �
�
jf j�min�

for n 	 �M � Equation 
� now follows directly from 
�� and the fact that
�
An� 	 jjAnjj�jjA��

n jj�� �

To obtain the number of iterations for convergence� we need the following
Lemma by van der Vorst ���

�



Lemma � Let x be the solution to G�Gx 	 G�b and xj be the jth iterant of

the ordinary conjugate gradient method applied to this normal equation� If

the eigenvalues f�kg of G�G are such that

� � �� � ��� � �p � b� � �p�� � ��� � �n�q � b� � �n�q�� � ��� � �n�

then

jjG
x� xj�jj�
jjG
x� x��jj� � 

�
b� �
b � �

�j�p�q

� max
���b��b��

�
pY

k��

�
� � �k
�k

� nY
k�n�q��

�
�k � �

�k

��
�


��
Here

b �
�
b�
b�

� �

�

� ��

We remark that equation 
�� can be derived from the following standard
error estimate of the conjugate gradient method�

jjG
x� xj�jj�
jjG
x� x��jj� � minPj

max
k�������n

jPj
�k�j�

see Golub and van Loan ����� Here Pj is any jth degree polynomial with
constant term �� By passing linear polynomials through the outlying eigen�
values �k� � � k � p and n� q�� � k � n� and using a 
j � p� q�th degree
Chebyshev polynomial to minimize the error in the interval ��p��� �n�q� we
get 
���
Notice that for � � �b�� b��� we always have

� � �k � �

�k
� �� n� q � � � k � n�

Thus 
�� can be simpli�ed to

jjG
x� xj�jj�
jjG
x� x��jj� � 

�
b� �
b� �

�j�p�q

� max
���b��b��

pY
k��

�
� � �k
�k

�
� 
��

In our case� we have G 	 C��
n �f �An�f �� By Theorem � we can choose

b� 	 ��  and b� 	 �� � Then p and q are constants that depend only on 
but not on n� By choosing  � �� we have

b� �
b� �

	
��p

�� �


� �

��



In order to use 
��� we need a lower bound for �k for � � k � p� By 
��
we see that for n su�ciently large�

jjG��jj� 	 jjA��
n �f �Cn�f �jj� � c�
An�f �� � cn��

for some constant c that does not depend on n� Hence

�k � min
�

�� 	
�

jjG��jj��
� cn���� � � k � n�

Thus for � � k � p and � � ��� � � � �� we have�

� � � � �k
�k

� cn���

Hence 
�� becomes

jjG
x� xj�jj�
jjG
x� x��jj� � cpn�p�j�p�q�

Therefore given arbitrary tolerance � 	 �� an upper bound for the number
of iterations required to make

jjG
x� xj�jj�
jjG
x� x��jj� � �

is given by

j� � p� q � p log c� �p logn� log �
log 

	 O
� logn� ���

Since by using FFT� the matrix�vector product


C��
n �f �An�f ��

�
C��
n �f �An�f ��v

can be done in O
n logn� operations for any vector v� the cost per iteration of
the conjugate gradient method is also of O
n logn�� Thus we conclude that
the work of solving 
�� to a given accuracy � is O
n log� n� when � 	 ��
When � 	 �� i�e� �
An�f �� 	 O
��� the number of iterations required

for convergence is of O
��� Hence the complexity of the algorithm reduces
to O
n logn�� We remark that in this case� one can show further that the
method converges superlinearly for the normalized preconditioned system due
to the clustering of the singular values� see Chan and Strang ��� or Chan ���
for details� In contrast� the method converges just linearly for the normalized
system A�

n�f �An�f �x 	 A�

n�f �b�

��



� Numerical Results�

In this section� we test the convergence rate of the normalized preconditioned
systems with generating functions in C��� Six di�erent generating functions
were tested� They are


a� aj 	 
jjj� ����	� � i
jjj� ����	�� j 	 ������� � � � �


b� aj 	



jjj� ����	� j � ��
i
jjj� ����	� j � ��


c� aj 	



jjj� ����	� � i
jjj� ����	� j 		 ��
� j 	 ��


d� aj 	

��
�

jjj� ����	� j 	 ��
� j 	 ��
i
jjj� ����	� j � ��


e� aj 	

��
�
 j 	 ��
�� jjj 	 ��
� jjj 	 ��


f� aj 	

���
��
�

�
�� j 	 ��

�
���j
�
�

j�
� �

j�
� jjj 	 ��

Since the sequences aj are absolutely summable� it follows that the corre�
sponding generating functions are continuous� Tables ��� show the number
of iterations required to solve the systems

An�f �
�An�f �x 	 A�

n�f �b

and

C��

n �f �An�f ��
�
C��

n �f �An�f ��x 	 
C
��
n �f �An�f ��

�C��
n �f �b�

The stopping criterion we used is jjrqjj��jjr�jj� � ���	� where rq is the residual
vector after q iterations� The right hand side b is the vector of all ones and
the zero vector is our initial guess� The computations are done by using
��byte arithmetic on a Vax ����

��



We see that for the normalized preconditioned systems� the number of
iterations required for convergence indeed depends on the condition number
of An� If An is well�conditioned� as is in the cases 
a� and 
b�� then the
number of iterations remains constant when n increases� Therefore the total
complexity of the algorithm is O
n logn� in these cases� However� if An is
not well�conditioned� as is in the cases 
c� and 
d�� we see that the number
of iterations does increase with n�
Sequences 
e� and 
f� are the Fourier coe�cients of functions f

� 	

� sin� 
 and f

� 	 
� respectively and they both have a zero in ���� ��� In
case 
e�� the matrix An is the ��dimensional discrete Laplacian and is known
to have �
An� 	 O
n��� In case 
f�� �
An� 	 O
n��� see Chan ���� For
case 
e�� the normalized preconditioned system still converges in an O
logn�
fashion while for case 
f�� the number of iterations increases faster than O
n��
Thus the convergence rate of our method does depend on whether f has a
zero or not�
As for the time comparison� we report that in case 
a� with n 	 ����

it requires about ���� seconds to solve the original normalized system and
about ���� seconds to solve the normalized preconditioned systems� For case

c� with n 	 ��� again� it requires about �� ������ seconds to solve the
original normalized system and about ����� seconds to solve the normalized
preconditioned systems� Thus there is about �ve to eighty times saving in
speed when preconditioning is employed�
In Figures � and � we depict the spectra of the iteration matrices in cases


b� and 
d� with n 	 ��� In the �gures� the eigenvalues of the matrices are
ordered as

�� � �� � � � � � �n�

We note that the spectra of the normalized preconditioned matrices indeed
are clustered around ��

��




a� 
b�
n A�

nAn 
C��
n An�

�
C��
n An� A�

nAn 
C��
n An�

�
C��
n An�

�� � � �� �
� �� � �� �
��  �  �
�� �� � � �
�� �� � �� �
�� �� � �� �
��� � � �� �

Table �� Number of Iterations for Di�erent Generating Functions


c� 
d�
n A�

nAn 
C��
n An�

�
C��
n An� A�

nAn 
C��
n An�

�
C��
n An�

�� � � �� ��
� � �� �� ��
�� �� �� ��� ��
�� ��� � �� ��
�� ��� �� ��� �
�� ��� �� ���� �
��� �� �� ���� �

Table � Number of Iterations for Di�erent Generating Functions


e� 
f�
n A�

nAn 
C��
n An�

�
C��
n An� A�

nAn 
C��
n An�

�
C��
n An�

�� � � � �
�  �� ��� �
�� �� �� ��� ��
�� �� �� 	 ���� ���
�� ��� � 	 ���� ���
�� ��� � 	 ���� ����

Table �� Number of Iterations for Di�erent Generating Functions

��



� Concluding Remarks

In this paper� we have considered solution of complex Toeplitz systems
Anx 	 b where An is generated by ��periodic complex�valued continuous
function� The system is solved by conjugate gradient method applied to the
preconditioned system


C��
n An�

�
C��
n An�x 	 
C

��
n An�

�C��
n b�

where Cn is the T� Chan circulant preconditioner� We show that if 
i� f has
no zeros and 
ii� �
An� 	 O
n��� then the number of iterations required for
convergence is at most O
� logn � ��� Hence the total complexity of the
algorithm is of O
�n log� n � n logn��
We emphasize that from the examples given in x�� we cannot remove

neither condition 
i� nor 
ii� on f in order that the method still converges
in O
� logn � �� steps� We further remark that these two conditions are
mutually exclusive� In fact� if f

� 	 ei�� then f has no zeros but An�f � is
singular for all n� On the other hand� if f

� 	 � sin� 
� then An�f � is the
��dimensional discrete Laplacian with �
An�f �� 	 O
n���

��



References

��� G� Ammar and W� Gragg� Superfast Solution of Real Positive De�nite

Toeplitz Systems� SIAM J� Matrix Appl� V� 
������ pp� ������

�� J� Bunch� Stability of Methods for Solving Toeplitz Systems of Equations�
SIAM J� Sci� Statist� Comput�� V� 
������ pp� ��������

��� R� Chan and G� Strang� Toeplitz Equations by Conjugate Gradients with
Circulant Preconditioner � SIAM J� Sci� Statist� Comput�� V�� 
������
pp� ��������

��� R� Chan� The Spectrum of a Family of Circulant Precondtioned Toe�plitz

Systems� SIAM J� Numer� Anal�� V� 
������ pp� ��������

��� R� Chan� Circulant Preconditioners for Hermitian Teoplitz Systems�
SIAM J� Matrix Anal� Appl�� V�� 
������ pp� �������

��� R� Chan� Toeplitz Preconditioners for Toeplitz Systems with Nonnegative
Generating Functions� IMA J� Numer� Anal�� V��� 
������ pp� ��������

��� R� Chan� X� Jin and M� Yeung� The Circulant Operator in the Banach

Algebra of Matrices� Linear Algebra Appls�� V��� 
������ pp� ������

��� R� Chan� X� Jin and M� Yeung� The Spectra of Super�optimal Circulant

Preconditioned Systems� SIAM J� Numer� Anal�� V�� 
������ pp� ����
����

��� R� Chan and M� Yeung� Circulant Preconditioners for Toeplitz Matri�

ces with Positive Continuous Generating Functions� Math� Comp�� V���

���� pp� ������

���� R� Chan and M� Yeung� Circulant Preconditioners Constructed from

Kernels� SIAM J� Numer� Anal�� August� ����

���� R� Chan and P� Tang� Fast Toeplitz Solvers Based on Band�Toeplitz

Preconditioners� HKU Math� Dept� Report  ��� January� ����

��� T� Chan� An Optimal Circulant Preconditioner for Toeplitz Systems�
SIAM J� Sci� Statist� Comput�� V� 
������ pp� ��������

��



���� P� Davis� Circulant Matrices� John Wiley ! Sons� Inc�� New York� �����

���� G� Golub and C� van Loan� Matrix Computations� The Johns Hopkins
University Press� Maryland� �����

���� U� Grenander and G� Szeg�o� Toeplitz Forms and their Applications� nd
Ed�� Chelsea Pub� Co�� New York� �����

���� T� Huckle� Circulant and Skew�circulant Matrices for Solving Toeplitz

Matrix Problems� in Cooper Mountain Conference on Iterative Methods�
Cooper Mountain� Colorado� �����

���� T� Ku and C� Kuo� Design and Analysis of Toeplitz Preconditioners�
IEEE Trans� Acoust� Speech Signal Process�� to appear�

���� T� Ku and C� Kuo� Spectral Properties of Preconditioned Rational

Toeplitz Matrices � The Nonsymmetric Case� USC�SIPI Report  ����
April� �����

���� G� Strang� A Proposal for Toeplitz Matrix Calculations� Stud� Appl�
Math�� V�� 
������ pp� ��������

��� W� Trench� An Algorithm for the Inversion of Finite Toeplitz Matrices�
SIAM J� Appl� Math�� V� 
������ pp� ������

��� E� Tyrtyshnikov� Optimal and Super�optimal Circulant Preconditioners�
SIAM J� Matrix Anal� Appl�� to appear�

�� H� Van der Vorst� Preconditioning by Incomplete Decomposition� Ph�D
thesis� Rijksuniversiteit te Utrecht� ����

��� J� Wilkinson� The Algebraic Eigenvalue Problem� Clarendon Press� Ox�
ford� �����

��� A� Zygmund� Trigonometric Series� nd Ed�� Cambridge University
Press� �����

�


