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Abstract

Boundary value methods are applied to find transient solutions of M/M/2
queueing systems with two heterogeneous servers under a variant vacation
policy. An iterative method is employed to solve the resulting large linear
system and a Crank-Nicolson preconditioner is used to accelerate the conver-
gence. Numerical results are presented to demonstrate the efficiency of the
proposed method.
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1. Introduction

Queueing networks with vacation were proposed in the 1970s to overcome
the deficiency of classical queueing networks in modeling complex hi-tech
systems [19]. Server vacations may literally mean a lack of work, or figura-
tively stand for server failure, server maintenance, or server taking another
assigned job, and hence the introduction of server vacations makes waiting-
line systems more lifelike. The applications of vacation queueing systems
lie in various areas such as flexible manufacturing systems, lane control at
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border-crossing stations, and data transfer in telecommunication systems.
The thorough development of queueing networks with vacation can be found
in survey papers by Teghem [18], Doshi [10, 11], and the monographs by
Takagi [17], and Tian and Zhang [19].

Homogeneity of service rates is a general assumption in the study of
multiserver queueing system and it ensures that all servers in the system
provide services at an identical rate. However, the hypothesis of homoge-
neous systems is feasible only when the service process is mechanically or
electronically controlled. For human servers, they are more likely to per-
form the same assignment at different service rates. Therefore heterogeneous
servers are introduced and their service time distributions may be different
for different servers. The combination of server vacations and heterogeneous
servers is more practical in real-life situations [14, 21, 22].

In [23], Yue et al. proposed an M/M/2 queueing system with one queue
and two heterogeneous servers under a variant vacation policy, in which the
two servers will simultaneously take at most J vacations when the system
becomes empty. They carried out a steady-state analysis and obtained the
stationary distributions of system size and mean system size. Moreover, they
studied the distribution of the amount of vacations taken, and the conditional
stochastic decomposition properties of queue length and waiting time. The
analytic results in [23], however, are based on the assumption of infinite
queueing spaces which may not be practical in general.

For the sake of practicality, in this paper, we aim to consider the problem
with finite queueing spaces and find the transient solution of the queueing
system in [23]. It is well known that the transient solution of a queueing
system can be numerically approximated by discretizing the Kolmogorov
backward equation and solving the resulting ordinary differential equation
(ODE) system [9, 16]. Classical initial value methods (IVMs) like Runge–
Kutta methods are natural candidates but they are computationally more
expensive than multistep methods of comparable accuracy. In this work, we
follow the idea in [7] and apply the boundary value methods (BVMs) to solve
the ODE systems. BVMs are the generalization of implicit linear multistep
formulas (LMFs), and by using those with unconditional stability [5] one can
disregard the restrictions on the step sizes for stability reasons. However,
temporal discretization with BVMs requires solutions of larger linear systems
than with Runge–Kutta methods or LMFs used as IVMs. Fortunately, owing
to the block tridiagonal structure of the transition rate matrix, the resulting
linear system is sparse and therefore we could resort to iterative methods.
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Preconditioning techniques were long used to speed up the convergence
process of iterative methods when solving large sparse linear systems pro-
duced by BVMs [4]. Over the years, different preconditioners were proposed,
including the well-known T. Chan circulant preconditioner [2, 8], the P -
circulant preconditioner [2], the Strang-type circulant preconditioner [2, 6],
the skew-circulant preconditioner [3], and recently the Crank-Nicolson (CN)
preconditioner [13, 20]. In [20], the CN preconditioner is paired with BVMs
for pricing options in the jump-diffusion model and the numerical results
therein show that the CN preconditioner contributes to smaller computa-
tional cost and fewer iterations than the Strang-type preconditioner. In this
paper, we mainly discuss the usage of the CN preconditioner because we will
see from the numerical results that it requires cheaper computational cost
than other methods.

The rest of the paper is organized as follows. In section 2, we outline the
two-server queueing system and its variant vacation policy. In section 3, we
briefly introduce the BVMs and apply them to discretize the Kolmogorov
backward equation to obtain an ODE system. In section 4, we form the CN
preconditioner and study some of its properties when used in the iterative
method. In section 5, we present the numerical results. In section 6, we give
some concluding remarks and ideas of possible future work.

2. Transient solution for queueing network with variant vacation

policy

In this paper, we consider theM/M/2 queueing system with two heteroge-
neous servers under a variant vacation policy proposed in [23]. Customers ar-
rive and join a single queue according to the first-come first-serviced (FCFS)
principle. The arrival of customers is modeled by the Poisson process with
rate λ. When the system becomes empty, the two servers will simultaneously
take a vacation of length V , where V is an exponentially distributed variable
with parameter θ. When the servers are back from a vacation, they either
resume working immediately if they find at least one customer waiting in the
queue, or leave for another vacation of the same length V . The two servers
will only take at most J vacations and after that, they will stay active in the
system to provide services even when the system becomes empty.

The service rates of the two heterogeneous servers are modeled by expo-
nential distributions with rates µ1 and µ2 for Server 1 and Server 2 respec-
tively. Note that µ1 6= µ2 since the two servers are heterogeneous. When
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both servers are free at the moment, Server 1 will step up to serve the new
arriving customer. Finally, all the stochastic processes involved in the system
are assumed to be independent.

It is noted that M/M/2 vacation queueing systems are modeled by quasi-
birth-and-death (QBD) processes, the generalization of the birth-and-death
process from a one-dimensional state space to a multidimensional state space
[19]. Let X(t) be the number of customers in the system at time t and
L(t) = j, j = 0, 1, . . . , J + 1 be the status of the servers at time t. The
state (i, j) means that i ≥ 0 customers are in the system and both servers
are taking the (j+1)-th vacation for j = 0, 1, . . . , J − 1. Moreover, the state
(0, J) means that the system is empty while both servers are free. The state
(1, J) means that one customer is in the system while Server 1 is busy and
Server 2 is free. The state (1, J+1) means that one customer is in the system
while Server 2 is busy and Server 1 is free. The state (i, J) means that i ≥ 2
customers are in the system while both servers are busy.

For the two-dimensional Markov process {(X(t), L(t)), t ≥ 0} with the
state space

Ω0 = {(1, J + 1)} ∪ {(i, j), i ≥ 0, j = 0, 1, . . . , J},

the infinitesimal generator of the process is given by [23]:

Q0 =

























B00 B01

B10 B11 B12

B21 A1 A0

A2 A1 A0

A2 A1
. . .

. . .
. . .

. . .
. . .

. . .

























.

The size of the submatrices A0, A1, A2 is (J + 1)-by-(J + 1). Their explicit
forms are A0 = λIJ+1, where IJ+1 is the identity matrix of size (J + 1)-by-
(J + 1),

A1 =















−(λ + θ) θ
−(λ+ θ) θ

. . .
...

−(λ+ θ) θ
−(λ+ µ1 + µ2)















,

4



and

A2 =















0
0

. . .

0
µ1 + µ2















.

The other submatrices which represent boundary states are

B00 =















−(λ+ θ) θ
−(λ + θ) θ

. . .
. . .

−(λ + θ) θ
−λ















,

B01 =











λ 0
λ 0

. . .
...

λ 0











, B10 =















0
0

. . .

µ1 0
µ2















,

B11 =



















−(λ+ θ) θ
−(λ + θ) θ

. . .
...

−(λ + θ) θ
−(λ+ µ1)

−(λ+ µ2)



















,

B12 =















λ
λ

. . .

λ
λ















, B21 =











0
. . .

0
µ2 µ1











,

where B00 is a (J +1)-by-(J +1) matrix, B01 and B21 are (J +1)-by-(J +2)
matrices, B10 and B12 are (J + 2)-by-(J + 1) matrices, and B11 is a (J + 2)-
by-(J + 2) matrix.

In [23], Yue et al. started from the matrix Q0 and studied the underlying
properties of the vacation queueing system. The steady-state analysis in [23]
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is built on the assumption of infinite queue capacity. In this paper, we are
interested in finite queueing spaces and transient probabilities.

Let n be the number of queueing spaces in the system. Then the state
space is trimmed down to

Ω = {(1, J + 1)} ∪ {(i, j), 0 ≤ i ≤ n, j = 0, 1, . . . , J}.

Suppose pi,j(t) is the probability that the network is in state (i, j) at time t.
Let

p(t) = [p0,0(t), . . . , p0,J(t), p1,0(t), . . . , p1,J+1(t), pn,0(t), . . . , pn,J(t)]
⊺,

then the Kolmogorov backward equation is

dp(t)

dt
= Q⊺p(t), (2.1)

where Q is the block tridiagonal transition rate matrix

Q =



























B00 B01

B10 B11 B12

B21 A1 A0

A2 A1 A0

A2 A1
. . .

. . .
. . . A0

A2 A1 A0

A2 A1 + A0



























. (2.2)

From now on we let
N = (n+ 1)J + n + 2

denote the size of matrix Q. We remark that the matrix Q satisfies

Q1 = 0, (2.3)

where 1 and 0 are RN vectors of all ones and zeros respectively. Hence each
row of Q sums to zero.
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3. Boundary value method

In this section, we consider how to solve (2.1) by BVMs, which are nu-
merical methods based on LMFs and renowned for high order accuracy and
unconditional stability [2, 5]. For simplicity, we first consider solving a gen-
eral IVP:

{

u′(t) = g(t, u), t ∈ [0, T ],
u(0) = u0,

(3.1)

by BVMs. Suppose that the time domain [0, T ] is divided into m timesteps
with h = T/m and tj = jh, j = 0, 1, . . . , m. Let uj and gj be the approx-
imations to u(tj) and g(tj, u(tj)) respectively. By using a µ-step, and s-th
order accurate LMF, we have the following relations:

µ−ν
∑

l=−ν

αl+νuj+l = h

µ−ν
∑

l=−ν

βl+νgj+l, j = ν, . . . , m− µ+ ν. (3.2)

The BVM in (3.2) should be used with ν initial conditions and (µ − ν)
final conditions. However, the IVP (3.1) only gives the initial value u0.
To obtain the other initial and final values, we apply adequate difference
methods and get the additional (µ − 1) equations which also preserve the
s-th order accuracy:

µ
∑

l=0

α
(k)
l ul = h

µ
∑

l=0

β
(k)
l gl, k = 1, . . . , ν − 1, (3.3)

and

µ
∑

l=0

α
(k)
µ−lum−l = h

µ
∑

l=0

β
(k)
µ−lgm−l, k = m− µ+ ν + 1, . . . , m, (3.4)

where αl and βl are determined by different BVMs [5]. Applying the s-th
order accurate BVM formulas (3.2)–(3.4) to (3.1), we obtain a linear system
in matrix form as follows:

Lsu = hRsg + e1u0 +O(hs), (3.5)
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where u = [u0, u1, . . . , um]
⊺, g = [g0, g1, . . . , gm]

⊺, e1 = [1, 0, . . . , 0]⊺ ∈ R(m+1),
and Ls and Rs are (m+ 1)-by-(m+ 1) banded matrices:

Ls =

















































1 · · · 0

α
(1)
0 · · · α

(1)
µ

...
...

...

α
(ν−1)
0 · · · α

(ν−1)
µ

α0 · · · αµ

α0 · · · αµ

. . .
. . .

. . .
. . .

. . .
. . .

α0 · · · αµ

α
(m−µ+ν+1)
0 · · · α

(m−µ+ν+1)
µ

...
...

...

α
(m)
0 · · · α

(m)
µ

















































and

Rs =

















































0 · · · 0

β
(1)
0 · · · β

(1)
µ

...
...

...

β
(ν−1)
0 · · · β

(ν−1)
µ

β0 · · · βµ

β0 · · · βµ

. . .
. . .

. . .
. . .

. . .
. . .

β0 · · · βµ

β
(m−µ+ν+1)
0 · · · β

(m−µ+ν+1)
µ

...
...

...

β
(m)
0 · · · β

(m)
µ

















































.

See [2, 3, 5, 6, 7] for details.
Recall that our goal is to find the transient solution p(T ) in (2.1) for

some finite time T , given the initial state p(0). We adhere to the idea in
[7] and adopt the BVMs to discretize (2.1). In this paper, we use the three-
step (µ = 3), fourth order (s = 4) extended trapezoidal rules of second kind
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(ETR2) [5] in (3.2)–(3.4). For the stability properties for ETR2, readers are
referred to the theoretical studies in [1].

Let pk denote the discrete approximation of p(tk) for k = 0, 1, . . . , m. In
particular, p0 is indeed the given initial state of the queueing system. The
ETR2 mainly involves

1

12
(−pk−2 − 9pk−1 + 9pk + pk+1) =

hQ⊺

2
(pk−1 + pk), k = 2, 3, . . . , m− 1,

with the additional equations

1

24
(−17p0 + 9p1 + 9p2 − p3) =

hQ⊺

4
(p0 + 3p1),

1

24
(pm−3 − 9pm−2 − 9pm−1 + 17pm) =

hQ⊺

4
(3pm−1 + pm).

We pile up the vectors pk, k = 0, 1, . . . , m and let p = [p⊺0, p
⊺

1, . . . , p
⊺

m]
⊺.

Combining all the ETR2-related equations, we get the resulting ODE system

Ap ≡ (L4 ⊗ IN − hR4 ⊗Q⊺)p = e1 ⊗ p0 ≡ b, (3.6)

where L4 and R4 are (m+ 1)× (m+ 1) matrices

L4 =



















1 0 0 0
−17

24
9
24

9
24

− 1
24

− 1
12

− 9
12

9
12

1
12

. . .
. . .

. . .
. . .

− 1
12

− 9
12

9
12

1
12

1
24

− 9
24

− 9
24

17
24



















, R4 =



















0 0
1
4

3
4
1
2

1
2
. . .

. . .
1
2

1
2
3
4

1
4



















,

and ⊗ is the Kronecker product.

4. The CN preconditioner

After discretizing the Kolmogorov backward equation (2.1) by the fourth
order accurate BVM, we obtain an ODE system (3.6). The size of the coef-
ficient matrix A in (3.6) is

(m+ 1)N = (m+ 1)[(n+ 1)J + n+ 2],

which is large especially when a small timestep is in use. However, it still
retains plenty of sparsity. Hence we opt for the generalized minimal residual
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(GMRES) method [15] and design an appropriate preconditioner for better
convergence.

The CN preconditioner was firstly proposed by Hou and Sun [13]. Later,
in [20], Yang et al. extended Hou-Sun’s scheme and applied the GMRES
method with a right CN preconditioner to solve a BVM-discretized problem
for pricing options in a jump-diffusion model. The CN preconditioner is
motivated by the fact that the CN timestepping scheme itself is a one-step
and second order accurate BVM with the formula

−pk−1 + pk =
hQ⊺

2
(pk−1 + pk), k = 1, 2, . . . , m.

If we use the BVM version of the CN timestepping scheme, the resulting
ODE system after discretizing (2.1) becomes

(Lc ⊗ IN − hRc ⊗Q⊺)p = b, (4.1)

where

Lc =











1
−1 1

. . .
. . .

−1 1











and Rc =











0 0
1/2 1/2

. . .
. . .

1/2 1/2











.

Inspired by [20], we use the coefficient matrix in (4.1)

P ≡ Lc ⊗ IN − hRc ⊗Q⊺ (4.2)

as the preconditioner for our ODE system (3.6). In particular, we use (4.2)
as a right preconditioner in the GMRES method because we can derive the-
oretical properties of P . We remark that the CN preconditioner in (4.2) can
be cheaply inverted step by step as it is only a one-step method.

We need the following two lemmas to guarantee the invertibility of (4.2)
before using it as a preconditioner.

Lemma 1. The eigenvalues of Q in (2.2) have nonpositive real parts.

Proof: Let γ be an eigenvalue of Q. Suppose that qij is the (i, j)-th entry
of Q for i, j = 1, 2, . . . , N . From the expression of Q in (2.2), we find that

qii < 0 and qij > 0, j 6= i,
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for each i = 1, 2, . . . , N . Moreover, we have

|qii| = −qii =

N
∑

j=1, j 6=i

qij

since the sum of each row of Q is zero according to (2.3). Applying the

Gershgorin circle theorem [12] to Q, we have γ ⊂

N
⋃

i=1

Di, where

Di =

{

z ∈ C : |z − qii| ≤
N
∑

j=1, j 6=i

|qij |

}

= {z ∈ C : |z − qii| ≤ |qii|}.

Since all Di’s are closed disks lying on the left-half plane, γ has a nonpositive
real part.

Lemma 2. [13] Let γ(Q⊺) denote an eigenvalue of Q⊺. If h ·γ(Q⊺) 6= 2, then
the matrix P defined in (4.2) is nonsingular.

We note that Q is real. Therefore, an eigenvalue of Q is also an eigenvalue
of Q⊺ and hence Lemma 1 holds for Q⊺ as well. According to Lemmas 1 and
2, we have the following theorem.

Theorem 1. The matrix P in (4.2) is nonsingular.

The next theorem is about the convergence of the GMRES method when
CN preconditioner is used.

Theorem 2. [20, Theorem 3.3] Let P in (4.2) be the right preconditioner for
solving (3.6). We have

‖AP−1b− b‖∞ = O(h3).

Theorem 2 can be used to show that the residual of the first iteration in the
GMRES method with right CN preconditioner decreases with the size of the
timestep. See [20] for more details about the CN preconditioner.

For the operation cost per iteration, the main work of the GMRES method
with right preconditioning is the matrix-vector multiplication AP−1z. Here
the term P−1z can be obtained by solving (m + 1) sparse linear systems of
size N -by-N and it requires O(Nm) operations [13]. If we replace P with
circulant or skew-circulant preconditioners, the same term can be obtained
by performing fast Fourier transforms and the computational cost is of order
O(Nm logm) [2, 3, 6].
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5. Numerical results

In this section, we try to find the transient probabilities p(T ), where T is
a finite number, in the single-queue queueing system with two heterogeneous
servers under a variant vacation policy [23]. Recall that n is the number of
queueing spaces in the system, J is the number of vacations the two servers
are allowed to take, λ is the Poisson distribution parameter for the arriving
customers, µ1 and µ2 are distinct exponentially distributed service rates for
the two servers, θ is the exponential distribution rate of the vacation time.
We assume that the initial state of the system is (0, 0) and set

p0 = [1, 0, . . . , 0]⊺ ∈ R
N .

Two sets of parameters are put to the test:

• Example 1. T = 10, n = 40, J = 30, λ = 2, µ1 = 1, µ2 = 2 and
θ = 1.5;

• Example 2. T = 10, n = 120, J = 10, λ = 5, µ1 = 2, µ2 = 4 and
θ = 3;

From (2.3), the transition rate matrix Q has zero row sum and therefore
is singular. Together with the consistency condition of the ETR2, we know
that the Strang-type preconditioner [2, 6] will also be singular [3]. In the
numerical experiments, we only try out the P -circulant preconditioner [2] and
the Strang-type skew-circulant preconditioner [3] for comparison purpose.

When solving the ODE system (3.6) by the GMRES method with a right
preconditioner, we use a stopping criterion of 10−7. In Table 1, we report the
unpreconditioned iterations and the preconditioned iterations for P -circulant
preconditioner, Strang-type skew-circulant preconditioner, and CN precondi-
tioner under the labels “No”, “P -circ”, “skew” and “CN” respectively. The
preconditioned iterations are fewer than the unpreconditioned ones under the
effect of preconditioning. Out of the three chosen preconditioners, the CN
preconditioner outperforms the other two with smaller iteration numbers.
In addition to fewer iterations, the CN preconditioner also has the cheapest
computational cost in each iteration as discussed before.

We also sketch the residuals of the first five iterations in the GMRES
method with CN preconditioner in Figure 1. We see that the residuals are
rapidly decreasing and in particular, the drops in both examples are more
obvious in the beginning, contributing to a smaller iteration number.
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Table 1: Iteration numbers of GMRES method with no preconditioner, P -circulant precon-
ditioner, Strang-type skew-circulant preconditioner and CN preconditioner in Examples 1
& 2.

Example 1 Example 2
m No P -circ skew CN No P -circ skew CN
10 58 29 26 13 105 55 39 14
20 55 19 17 11 95 32 30 14
40 62 14 12 9 93 22 19 11
80 90 12 11 7 111 16 14 9
160 158 11 10 6 164 13 11 8

1 2 3 4 5

−7
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−4
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0(
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si
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0
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number of iterations
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g1

0(
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si
du
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)

 

 

m=10
m=20
m=40	
m=80
m=160

Figure 1: The residuals of the first five iterations in the GMRES method with CN pre-
conditioner in Examples 1 and 2.

6. Concluding remarks

In this paper, we use the BVMs with CN preconditioner to find transient
solutions of a vacation queueing system. Numerical results demonstrate that
the CN preconditioner greatly helps decrease the iteration numbers in the
GMRES method. Note that the queueing system considered in this paper has
only one queue which makes the inversion of the preconditioner inexpensive.
For future work, we will consider the problem with multiple queues, and
employ other efficient methods to find the transient solution, as well as the
steady-state solution.
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