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Abstract 

 
In the post-genomic era, the construction and control 

of genetic regulatory networks using gene expression 
data is a hot research topic. Boolean networks (BNs) and 
its extension Probabilistic Boolean Networks (PBNs) 
have been served as an effective tool for this purpose. 
However, PBNs are difficult to be used in practice when 
the number of genes is large because of the huge 
computational cost. 

In this paper, we propose a simplified multivariate 
Markov model for approximating a PBN The new model 
can preserve the strength of PBNs, the ability to capture 
the inter-dependence of the genes in the network, qnd at 
the same time reduce the complexity of the network and 
therefore the computational cost. We then present an 
optimal control model with hard constraints for the 
purpose of control/intervention of a genetic regulatory 
network. Numerical experimental examples based on the 
yeast data are given to demonstrate the effectiveness  of 
our proposed model and control policy. 
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1. Introduction 
 

An important issue in systems biology is to 
understand the mechanism in which cells execute and 
control a huge number of operations for normal functions, 
and also the way in which the cellular systems fail in 

disease, eventually to design some control strategy to 
avoid the undesirable state/situation. Many mathematical 
models such as neural networks, linear model, Bayesian 
networks, non-linear ordinary differential equations, Petri 
nets, Boolean Networks (BNs) and its generalization 
Probabilistic Boolean Networks (PBNs), multivariate 
Markov chain model etc. [1,2,4,11,15,16,17,21] have 
been proposed. Among all the models, BNs and PBNs 
have received much attention. The approach is to model 
the genetic regulatory system by a Boolean network and 
infer the network structure from real gene expression 
data. Then by using the inferred network model, the 
underlying gene regulatory mechanisms can be 
uncovered. This is particularly useful as it helps to make 
useful predictions by computer simulations. We refer 
readers to the survey paper by Shmulevich et al. [18,19] 
and the book by Shmulevich and Dougherty [20].  

The BN model was first introduced by Kauffman 
[12,13,14]. The advantages of this model can be found in 
Akutsu et al. [1], Kauffman [14] and Shmulevich et al. 
[17]. Since genes exhibit switching behavior [10], BN 
models have received much attention. In a BN, each gene 
is regarded as a vertex of the network and is quantized 
into two levels only (expressed (1) or unexpressed (0)). 
We remark that the idea and the model can be extended 
easily to the case of more than two states. The target gene 
is predicted by several genes called its input genes 
through a Boolean function. If the input genes and the 
Boolean functions are given, a BN is defined. The only 
randomness involved here is the initial system state. 
However, the biological system has its stochastic nature 
and the microarray data sets used to infer the network 



structure are usually not accurate because of the 
experimental noise in the complex measurement process. 
Thus stochastic models are more reasonable choices. To 
overcome the deterministic nature of a BN, Akutsu et al. 
[1] proposed the noisy Boolean networks together with an 
identification algorithm. In their model, they relax the 
requirement of consistency imposed by the Boolean 
functions. Regarding the effectiveness of a Boolean 
formalism, Shmulevich et al. [17] proposed a PBN that 
can share the appealing rule-based properties of Boolean 
networks and it is robust in the presence of uncertainty. 
The model parameters can be estimated by using 
Coefficient of Determination (COD) [8]. 

The dynamics of the PBN can be studied in the 
context of standard Markov chain [17,18,19]. This makes 
the analysis of the network easy. However, the number of 
parameters (state of the system) grows exponentially with 
respect to the number of genes n . Therefore it is natural 
to develop heuristic methods for model training or to 
consider other approximate model. Here we propose a 
simplified multivariate Markov model, which can capture 
both the intra- and inter-associations (transition 
probabilities) among the gene expression sequences. The 
number of parameters in the model is only 2( )O n  where 
n  is the number of genes in a captured network. We 
remark that this order is already minimal. We then 
develop efficient model parameters estimation methods 
based on linear programming. We further propose an 
optimal control formulation for regulating the network so 
as to avoid some undesirable states which may 
correspond to some disease like cancer.  

The rest of the paper is structured as follows. In 
Section 2, we present the simplified multivariate Markov 
model. In Section 3, the estimation method for model 
parameters is given. In Section 4, an optimal control 
formulation is proposed. In Section 5, we apply the 
proposed model and method to some synthetic examples 
and also the gene expression dataset of yeast. Concluding 
remarks are then given to address further research issues 
in Section 6.  
 
2. The Multivariate Markov Chain Model 
 

In this section, we first review a multivariate Markov 
chain model proposed in Ching, et al. [3] for modeling 
categorical time series data. We remark that the model 
has been first applied to predicting demand of inventory 
of correlated products. Later the model was applied to the 
building of genetic regulatory networks [4] from gene 
expression data. However, the number of parameters is 
still large and further reduction of the model parameters is 
necessary and a simplified model was proposed in [5]. In 
the remainder of this section, we present the simplified 
multivariate Markov chain model. 

Given n  categorical time sequences, we assume they 
share the same state space M . We denote the state 
probability distribution of Sequence j  at time t  by 

( ) 1 2,...j
t j n, = , ,V . In Ching, et al. [3], the following 

first-order model was proposed to model the relationships 
among the sequences: 
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Here ijλ  is the non-negative weighting of Gene j  to 

Gene i . The matrix ( )ijP  is a transition probability 
matrix for the transitions of states in Sequence j  to states 
in Sequence i  in one step, see for instance [3]. In matrix 
form we have 
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We note that the column sum of Q  is not equal to one 

(the column sum of each ( )ijP  is equal to one). The 
followings are two propositions [3] related to some 
properties of the model.  
Proposition 2.1 If 0ijλ >  for 1 i j n≤ , ≤ , then the 

matrix Q  has an eigenvalue equal to 1  and the 
eigenvalues of Q  have modulus less than or equal to 1.  

Proposition 2.2 Suppose that ( )ijP  ( 1 i j n≤ , ≤ ) are 

irreducible and 0ijλ >  for 1 i j n≤ , ≤ . Then there is a 

vector  
(1) (2) ( )[ ]Tn= , , ,V V V VL  

such that 
Q=V V  

and  

( )

1
[ ] 1 1

m
j

i
i

j n
=

= , ≤ ≤∑ V  

where m  is the number of states.  
In Proposition 2.2, we require all ( )ijP  are 

irreducible. But actually, if Q  is irreducible, we can get 
the same conclusion. If the model is applied to gene 
expression data sequences, one may take {0 1}M = ,  and 



( )i
tV  to be the expression level of the i -th gene at the 

time t . From (1), the expression probability distribution 
of the i -th gene at time ( 1)t +  depends on the weighted 

average of ( ) ( )ij j
tP V . We remark that this is a first-order 

model and ijλ  actually give the weighting of how much 

Gene i  depends on Gene j . In Ching, et al. [4], this 
model has been used to find cell cycles. The most proper 
parent genes for the i -th gene (i.e., ( )

1
i

t+V ) can be 

retrieved from the corresponding ijλ . The higher the 

value of ijλ , the stronger the parent and child relationship 

between i -th and j -th gene will be. When this process 
is repeated for each j , the whole genetic network can be 
constructed. Given a set of genes  

( ){ 1 2,... and (1,2,..., )}hj
hV h w j n: = , , ∈  

if for any gene in this set, the rest genes are the only 
candidates being a corresponding parent gene, then this 
set of genes forms a cycle. 

A simplified model was proposed in Ching et al. [5] 
by assuming  

             ( ) ifijP I i j= ≠ .                        （3） 
The simplified model has smaller number of parameters 
and it has been shown to be statistically better in terms of 
BIC, see for instance [5]. Moreover, Propositions 1 and 2 
still hold for the simplified model. 

 
3. Estimation of Model Parameters 

 
In this section, we present methods to estimate ( )ijP  

and ijλ . We estimate the transition probability matrix 
( )iiP  by the following method. First we count the 

transition frequency of the states in the i -th sequence. 
After making a normalization, we obtain an estimate of 
the transition probability matrix. We have to estimate n  
such m -by- m  transition probability matrices to get the 
estimate for ( )iiP  as follows: 
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From ( )iiF , one can obtain the estimate for ( )iiP  as 
follows: 
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Besides ( )ˆ ii
P , we need to estimate the parameters ijλ . It 

can be shown that the multivariate Markov model has a 
“stationary vector” V  in Proposition 2. The vector V  
can be estimated from the gene expression sequences by 
computing the proportion of the occurrence of each gene 
and we denote it by 

(1) (2) ( )ˆ ˆ ˆ ˆ( ,... )n T= , , .V V V V  
We therefore expect that  

ˆ ˆQ ≈ .V V  
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From the above equation, it suggests one possible way 
to estimate the parameters { }ijλΛ =  as follows: 
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We note that the following formulation of n  linear 
programming problems can give the necessary solutions 
of Problem (4). For each i :  

min iw
λ

 

subject to 

              
( )

( )

ˆ

ˆ

i
i i i

i
i i i

w B

w B

λ

λ

⎧
⎪ ,.⎪
⎨
⎪
⎪ ,.⎩

≥ −

≥ − +

e V
e V

                          (5) 

where 
(1) (2) ( ) ( )ˆ ˆ ˆ ˆ[ ]i nii

iB P= | | | | | ,V V V VL L  
and 

(1 1 ... 1)T= , , , .e  

Here iλ ,.  is the i -th row of Λ .  

We remark that the estimation method can be applied 
to the simplified model (3). We remark that other vector 
norms such as 2|| . ||  and 1|| . ||  can also be used but they 
have different characteristics. The former will result in a 
quadratic programming problem while 1|| . ||  will still 



result in a linear programming problem. The main 
computation cost comes from solving the linear 
programming problem. In the estimation of ˆ iiP , it 
involves only counting frequencies of transitions and 
therefore the cost is minimal. Once the model parameters 
are available, one can then construct the underlying 
genetic network easily. We will demonstrate this in the 
section of numerical examples. The model can also be 
further modified to include extra conditions such as some 

ijλ  are known to be zero. Such information can be 

included by adding the constraints 0ijλ = . Furthermore, 

for large network, it is known that the in-degree follows 
the Poisson distribution while the out-degree follows the 
power-law, i.e., the number of out-degree to some 
negative power. These important properties can also be 
easily included in our proposed model [24]. 
 
4. The Optimal Control Formulation 
 

In this section, we present the optimal control problem 
based on the simplified multivariate Markov model (3) 
and formulate it based on the principle of dynamic 
programming. In the simplified model (3) we proposed 
above, the matrix Q  can be regarded as a “transition 
probability matrix” for the multivariate Markov chain in 
certain sense, and tV  can be regarded as a joint state 
distribution vector. We then present a control model 
based on the paper by Ching, et al.[6]. Beginning with an 
initial joint probability distribution 0v  the gene 
regulatory network (or the multivariate Markov chain) 
evolves according to two possible transition probability 
matrices 0Q  and 1Q . Without any external control, we 
assume that the multivariate Markov chain evolves 
according to a fixed transition probability matrix 

0Q ( Q≡ ). When a control is applied to the network at 
one time step, the Markov chain will evolve according to 
another transition probability 1Q  (with more favorable 
steady states or a more favorable state distribution). It will 
then return back to 0Q  again if there is no control. We 
note that one can have more than one type of controls, 
i.e., more than one transition probability matrix 1Q  to 
choose in each time step. For instance, in order to 
suppress the expression of a particular gene, one can 
directly toggle off this gene. One may achieve the goal 
indirectly by means of controlling its parent genes which 
have a primary impact on its expression too. But for the 
simplicity of discussion, we assume that there is only one 
direct possible control here. We then suppose that the 
maximum number of controls that can be applied to the 
network during a finite investigation period T  (finite-
horizon) is K  where K T≤ . The objective here is to 
find an optimal control policy such that the state of the 

network is close to a target state vector z . Without loss 
of generality, here we focus on the first gene among all 
the genes. Accordingly, we remark that the sub-vector 

(1)z  denotes the vector containing the first two entries in 
z . It can be a unit vector (a desirable state) or a 
probability distribution (a weighted average of desirable 
states). The control system is modeled as: 
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to be the set which contains all the possible state 
probability vectors up to time t . We note that one can 
conduct a forward calculation to compute all the possible 
state vectors in the sets (1) (2) ... ( )U U U T, , ,  
recursively. Here the main computational cost is the 
matrix-vector multiplication and the cost is 2((2 ) )O n  
where n  is the number of genes in the network. We note 
that some state probability distribution actually does not 
exist because the maximum number of controls is K , the 
total number of vectors involved is only 

0 ( )

K

j

T
j T j=

!
.

! − !∑  

For example if 1K = , the complexity of the above 
algorithm is 2( (2 ) )O T n .  

Returning to our original problem, our purpose is to 
make the system go to the desirable states. The objective 
here is to minimize the overall average of the distances of 
the state vectors 1( ... )ti iv  ( 1 2 ... )t T= , , ,  to the target 
vector z , i.e., 

           
1 1

1 2( ... ) ( ) 1

1min ( ... )
T T

T

ti i i U T t

i i
T− ∈

=

|| − || .∑v
v z          (6) 

To solve (6), we have to define the following cost 
function 

( ( ) ) 1 0tD t k t T k K, , , ≤ ≤ , ≤ ≤v w  
as the minimum total distance to the terminal state at time 
T  when beginning with state distribution vector ( )tv w  

at time t  and that the number of controls used is k . Here 

tw  is a Boolean string of length t . Given the initial state 
of the system, the optimization problem can be 
formulated as: 

                        00
min{ ( 0 )}
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To solve the optimization problem, one may consider the 
following dynamic programming formulation: 

1( ( ) 1 )tD t k− , − , =v w  

1 2 1min{ (0 ) ( (0 ) )t tD t k− −|| − || + , , ,v w z v w  

           1 2 1(1 ) ( (1 ) 1)}t tD t k− −|| − || + , , + .v w z v w  (8) 

Here 10 t−w  and 11 t−w  are Boolean strings of size t . 
The first term in the right-hand-side of (8) is the cost 
(distance) when no control is applied at time t  while the 
second term is the cost when a control is applied. The 
optimal control policy can be obtained during the process 
of solving (8). We remark that instead of considering the 
objective (6), one can consider  

1 1
1( … ) ( ) 1

min ( ... )
T T

T

t t li i i U T t
i iα

− ∈
=

|| − || .∑v
v z  

with a new weighting { }iα  and a different vector norm 

l|| . || . Furthermore, it is interesting to study the case of 

infinite horizon. In this case tα  is chosen to be 
1(1 ) tα α −−  for some discount factor (0 1)α ∈ , .  

 
5. Numerical Experiments 

5.1. A Simple Example 

In this subsection, we consider a small five-gene 
network whose gene expression series can be found in the 
Appendix. Figure 1 shows the five-gene network. We 
note that Gene 1 and Gene 4 depends on all the other 
genes, Gene 2 depends on Gene 1 and Gene 3 only, Gene 
3 depends on Gene 1 and Gene 2 only, while Gene 5 
depends on itself only. 

To solve the linear programming problem in Equation 
(5), infinity norm is chosen for all numerical experiments. 
The matrices Λ , P , and 0Q  (without control) are 
obtained from the proposed model as follow:  

1 2 2 2 2

2 2 2 2 2
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0 3369 0 2604 0 2604 0 1417 0 0005
0 5000 0 0000 0 5000 0 0000 0 0000
0 5000 0 5000 0 0000 0 0000 0 0000
0 2045 0 2045 0 2045 0 2028 0 1838
0 0000 0 0000 0 0000 0 0000 1 0000
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and 0Q =   
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The target here is to suppress the first gene but no 

preference on other genes. The control we used is to 
suppress the first gene directly.  Thus the control matrix is 
as follows:  

1 2 2 2 2

1 1
( , )

0 0
Q I I I I⎛ ⎞

= , , , .⎜ ⎟
⎝ ⎠

Diag  

Without loss of generality, we assume that the initial state 
vector is the uniform distribution vector (for each gene), 
that is 
 

 
 
 
 

Figure 1.  The Five-gene Network 
 

0
1 (1 1 1 1 1 1 1 1 1 1)
2

T= , , , , , , , , , .v  

Moreover, we assume that the total time T  is 12 and we 
try several different numbers of controls 1 2 3 4 5K = , , , , . 
Table 1 shows the numerical results. All the computations 
were done in a PC with Pentium D and Memory 1GB 

1 2 

3 

4 

5 



with MATLAB 7.0. In Table 1, “Policy" represents the 
optimal time step at the end of which a control should be 
applied. For instance, [1 2 3], ,  means that the optimal 
control policy is to apply the control at the end of the 

1 2 3t = , , -th time step. From Table 1, observable 
improvements of the optimal value is obtained when K  
increases from 1 to 5 . 

Table 1. Numerical results for the 5-gene network 

K  1  2  3  4  5   
Control 
Policy  

[1] [2]  [1,2,3]  [1,2,3,7]  [1,2,3,7,8]  

Objective 
Value  

0.5628  0.4277  0.3379  0.2717  0.2090  

Time in
Seconds  

0.02  0.02  0.06  0.15  0.23  

 

5.2. The Yeast Example 

In this subsection, we apply our proposed simplified 
multivariate Markov models to the yeast data sequences 
[23]. Genome transcriptional analysis is an important 
analysis in medicine, etiology and bioinformatics. One of 
the applications of genome transcriptional analysis is used 
for eukaryotic cell cycle in yeast. The fundamental 
periodicity in eukaryotic cell cycle includes the events of 
DNA replication, chromosome segregation and mitosis. It 
is suggested that improper cell cycle regulation leads to 
genomic instability, especially in the etiology of both 
hereditary and spontaneous cancers [9,22]. Eventually, it 
is believed to play one of the important roles in the 
etiology of both hereditary and spontaneous cancers. The 
dataset used in our study is the selected set from Yeung 
and Ruzzo (2001) [23]. In the discretization, if an 
expression level is above (below) a certain standard 
deviation from the average expression of the gene, it is 
over-expressed (under-expressed) and the corresponding 
state is 1 ( 0 ) [4].  

To solve the linear programming problem in (5), 
infinity norm is chosen for all numerical experiments. 
The matrices Λ , P , and 0Q  (without control) are 
obtained from the proposed model. The initial state vector 
is assumed to be the uniform distribution (for each gene) 
vector  

0
1 (1 1 1)
2

T= , , , .v L  

In addition, we assume that the total time T  is 12  and 
several different maximum numbers of controls 

1 2 3 4 5K = , , , ,  are tried in our numerical experiments. 
The target is to suppress the first gene but no preference 
on other genes. That is the target state vector (1)z  is 
(1 0)T, . The control we used is to suppress the first gene 

directly. Thus the control matrix 1Q  takes the same form 
as the following:  

  1 2 2 2 2

1 1
( ,..., )

0 0
Q I I I I⎛ ⎞

= , , , .⎜ ⎟
⎝ ⎠

Diag                 

It means that we want to control the first gene such that it 
will be unexpressed with more probabilities. The 
transitions of all the other genes will not be changed. 
Table.2 reports the numerical results and the 
computational time for different numbers of controls K . 
From Table 2, observable improvements of the optimal 
value is obtained when K  increases from 1 to 5 . Take 
for example, if we will conduct 4 controls totally in the 
12 time steps, we need to suppress the first gene in the 
first 4 steps, and will not control it in other steps. These 
experiments show that even the number of genes (384 
genes in this data set) is comparatively large, the method 
still can find the control policies fast.  

Table 2. Numerical results for the yeast data set 
K   1  2  3  4  5   
Control 
Policy  

[1] [2]  [1,2,3]  [1,2,3,4]  [1,2,3,4,5] 

Objective 
Value  

0.6430 0.5751  0.5165  0.4582  0.4000  

Time in 
Seconds  

4.00  20.60  67.90  152.88  245.95  

 

6. Concluding Remarks 

In this paper, we proposed a simplified multivariate 
Markov model for approximating PBNs. Efficient 
estimation methods based on linear programming method 
are presented to obtain the model parameters. Methods 
for recovering the structure and rules of a PBN are also 
illustrated in details. We then give an optimal control 
formulation for control the network. Numerical 
experiments on synthetic data and gene expression data of 
yeast are given to demonstrate the effectiveness of our 
proposed model and formulation.  

For future research, We will extend the control 
problem to the case of having multiple control policy. We 
will develop efficient heuristic methods for solving the 
control problem and genetic algorithm is a possible 
approach [7]. Extension of the study to the case of infinite 
horizon is also interesting. Finally, we will also apply our 
model to more real world datasets.  

7. Appendix 

The five gene expression sequences.  
 



1 110000111110000010100011110101
2 010101110100110010011011010100
3 011011001100011000011111010100
4 110101010101111001001000111001
5 111111011011101110001010001111

Gene
Gene
Gene
Gene
Gene

:
:
:
:
:
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