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Abstract. The restoration of blurred images corrupted with impulse noise
is a difficult problem which has been considered in a series of recent papers.
These papers tackle the problem by using variational methods involving an L1-
shaped data-fidelity term. Because of this term, the relevant methods exhibit
systematic errors at the corrupted pixel locations and require a cumbersome
optimization stage. In this work we propose and justify a much simpler alter-
native approach which overcomes the above-mentioned systematic errors and
leads to much better results. Following a theoretical derivation based on a
simple model, we decouple the problem into two phases. First, we identify the
outlier candidates—the pixels that are likely to be corrupted by the impulse
noise, and we remove them from our data set. In a second phase, the image is
deblurred and denoised simultaneously using essentially the outlier-free data.
The resultant optimization stage is much simpler in comparison with the cur-
rent full variational methods and the outlier contamination is more accurately
corrected. The experiments show that we obtain a 2 to 6 dB improvement
in PSNR. We emphasize that our method can be adapted to deblur images
corrupted with mixed impulse plus Gaussian noise, and hence it can address
a much wider class of practical problems.

1. Introduction. Image deblurring [9] from noisy data is a fundamental problem
in image processing. Let the true image x belong to a proper function space S(Ω)
on Ω = [0, 1]2, and the observed digital image y be a matrix in Rm×m indexed
by A = {1, 2, · · · ,m}2. Image deblurring usually is modeled by ỹ = Hx + σn
where H : S(Ω) → Rm×m is a known linear operator that represents blurring
and σn ∈ Rm×m is the additive zero-mean Gaussian noise with standard deviation
σ ≥ 0. In real applications, practical systems can sometimes suffer from few or more
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pixels, called outliers, which are much noisier than others. Such perturbations
are typically caused by malfunctioning arrays in camera sensors, faulty memory
locations in hardware, or transmission in a noisy channel, and are modeled as
impulse noise. For an overview, see [9]. Taking these into account, a realistic
model for the recorded data y can be modeled as{

ỹ = Hx + σn,

y = Np(ỹ),
(1)

where Np : Rm×m → Rm×m represents outliers which take their values in the
dynamic range [dmin, dmax] of ỹ, namely dmin ≤ ỹij ≤ dmax for all (i, j). Outliers
are usually modeled as either salt-and-pepper or random-valued impulse noise:

• Salt-and-pepper noise: the gray level of y at pixel location (i, j) is

yij =





dmin, with probability s/2,

dmax, with probability s/2,

ỹij , with probability 1− s,

(2)

where s determines the level of the salt-and-pepper noise.
• Random-valued noise: the gray level of y at pixel location (i, j) is

yij =

{
dij , with probability r,

ỹij , with probability 1− r,

where dij are uniformly distributed random numbers in [dmin, dmax] and r
defines the level of the random-valued noise.

Clearly, random-valued impulse noise are more difficult to clean than salt-and-
pepper noise since the noise can be arbitrary numbers in [dmin, dmax]. Examples of
images blurred with an out-of-focus kernel of radius 3 and corrupted with different
noise patterns are shown in Figure 1. When the blurring operator H is equal to I,
the identity operator, the problem reduces to a denoising problem and a variety of
techniques have been proposed to tackle it, see, for example, [7, 10, 11, 18, 19]. In
this work, we consider the general case when H is any smoothing linear operator and
the problem is an inverse problem under impulse plus Gaussian noise. We focus on
the most common situation when H is a blurring operator. Let us emphasize that
deblurring is a fundamentally harder problem than denoising. Blurring smooths
the image and thus it entails a loss of high-frequency information. It is well-known
that the inverse problem — the inversion of H — is ill-posed [13, 29, 31]. Since
[30], a large variety of regularization methods have been conceived in order to cope
with perturbations dues to numerical errors and noise. Usually they are based on
an `2 data-fitting term which from a statistical point of view means that they are
adapted to deal with Gaussian noise. The standard and the current methods used
to restore blurred images corrupted by impulse plus Gaussian noise are discussed
in Section 2.

Our approach is to do the job in two phases. Part of the inspiration comes from
the papers [10, 11] where only denoising problems (H = I) were considered, even
though the present problem is much more complex (H 6= I and σ > 0). In the
first phase, we locate the data samples which are likely to be corrupted by impulse
noise. We call them outlier candidates. Such a task can be done easily by comparing
the data y with the output from a properly chosen median-type filter [20, 21] —
the data samples modified by the filter are likely to be outliers. Both outliers and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Lena image blurred by the out-of-focus kernel of radius
3 and contaminated by different noise patterns where σ is the stan-
dard deviation of the Gaussian noise, and s and r are the levels
of the salt-and-pepper and the random-valued noise, respectively.
The figures correspond to: (a) σ = 0 and s = 10%; (b) σ = 0 and
s = 70%; (c) σ = 10 (SNR=20.8dB) and s = 10%; (d) σ = 10
(SNR=20.8dB) and s = 70%; (e) σ = 0 and r = 10%; (f) σ = 0
and r = 40%; (g) σ = 10 (SNR=20.8dB) and r = 10%; (h) σ = 10
(SNR=20.8dB) and r = 40%.

their filtered values do not carry proper information in the sought-after image, so
outlier candidates are removed from the data set. In the second phase, we deblur
the image based only on the data samples that are not outlier candidates, and the
deblurring is done by a variational method where the prior information for locally
homogeneous images involving sharp edges is introduced using the Mumford-Shah
regularization function. We emphasize that what we do here is totally different
from what was done in [10, 11], where the papers only considered denoising and the
denoising was done only on the outlier candidates set. Numerical simulations show
that our method is 2 to 6 dB better than the full variational deblurring methods in
[4, 5, 6], where a functional consisting of a 1-norm data fidelity and the Mumford-
Shah regularization term is minimized. Our method outperforms them by at least
2 to 6 dB in PSNR and gives satisfactory results even for noise level as high as
s = 90% or r = 55%.

The rest of the paper is organized as follows. In Section II, we briefly review the
existing deblurring methods for solving (1). Our two-phase deblurring approach
is presented in Section III. The choice of the data fidelity term and the numerical
implementation of our method are discussed in Sections IV and V respectively.
Numerical simulation results are presented in Section VI and conclusions are given
in Section VII.
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Figure 2. Lena image blurred with out-of-focus kernel of radius
3, and then corrupted by impulse noise. The image is restored by
minimizing (3)–(4) with ϕ(t) =

√
t2 + 10−4 and β = 0.01. The left

is the restored image when s = 1% and the right is when r = 1%.

2. Critical Review of Current Methods. The main approaches to deblur im-
ages corrupted by impulse noise are briefly described below and illustrated by nu-
merical experiments.

2.1. Deblurring with no special care to the outliers. One can try to deblur
images corrupted by impulse noise by applying classical methods developed for
Gaussian noise. These usually amount to defining the restored image as a minimizer
of a functional of the form

Fy(x) = ‖Hx− y‖22 + βΦ(x), (3)

where Φ is a regularization term and β > 0 is the regularization parameter. Fre-
quently,

Φ(x) =
∑

(i,j)∈A

∑

(k,l)∈Vij

ϕ(|xij − xkl|), (4)

where Vij is the set of the four or the eight closest neighbors of pixel location (i, j)
and ϕ is an increasing function like those considered e.g. in [12, 22, 28]. Figure 2
shows the restored image obtained by minimizing the discretized formulation of (3)
with ϕ(t) =

√
t2 + α, for α = 10−4. Such ϕ(t) corresponds to the popular smoothly

approximated TV regularization term. Even for very small noise ratio say 1% of
impulse noise, the method gives very poor results containing numerous spurious
concentric rings. Essentially, the impulse noise got deblurred. We note that no
improvement can be expected even if one takes the original TV regularization term
or any other function ϕ satisfying ϕ′(0) > 0 since these functions give rise to stair-
casing effect.

2.2. Outlier smoothing followed by deblurring. Median-type filters are well
known to smooth outliers efficiently at a low computational cost [9, 20, 21]. Hence
a straightforward deblurring approach is to first restore the outliers using a median-
type filter and then to deblure the image using a variational method of the form
(3)–(4). This approach is illustrated in Figure 3. The salt-and-pepper noise and the
random impulse noise were first smoothed using an adaptive median filter (AMF)
[20] and an adaptive center-weighted median filter (ACWMF) [21], respectively, See
Figures 3(a) and (c). Then a variational method of the form (3) is applied onto
the images to obtain Figures 3(b) and (d). As in Figure 2, spurious circles occur
in Figures 3(b) and (d), especially near the edges.
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(a) (b) (c) (d)

Figure 3. Lena image blurred with out-of-focus kernel of radius
3, and then corrupted by impulse noise with s = 30% for Figs (a)
and (b), and r = 25% for Figs (c) and (d). Fig (a) is the result
of AMF and Fig (b) is the result by first applying AMF and then
minimizing (3)–(4) with ϕ(t) =

√
t2 + 10−4 and β = 0.01. Fig (c)

is the result of ACWMF and Fig. (d) is the result by first applying
ACWMF and then minimizing (3)–(4) with ϕ(t) =

√
t2 + 10−4 and

β = 0.01.

Other approaches for smoothing the impulse noise are the trilateral filter based
on ROAD statistic in [15], and the “despike” method in [23]. However, as we will see
in Section 3.2, whatever filter is used, the restored outliers do not fit the Gaussian
noise assumption involved in (3), and hence the variational method (3) will fail.

2.3. Simultaneous denoising and deblurring by a variational method. In
[4, 5, 6], the authors focus on the restoration of images degraded by blur and impulse
noise which corresponds to taking σ = 0 in our degradation model (1). To this end,
they minimize a functional Fy of the form

Fy(x) = ‖Hx− y‖1 + βΦ(x), (5)

where Φ(x) is the Mumford-Shah regularization term [22, 1, 3, 14]:

Φ(x) =
∫

Ω\Γ
|∇x|2 +

α

β

∫

Γ

dσ, (6)

and Γ is the edge set. Using the Γ-convergence functional for Φ, see [1], and the
smoothly regularized L1-norm, Fy is approximated by

Fy(x,w) =
∑

(i,j)∈A

√
[Hx− y]2ij + η + β

∫

Ω

w2|∇x|2 + α

∫

Ω

(
ε|∇w|2 +

(w − 1)2

4ε

)
,

(7)
where η > 0 and ε > 0 are close to 0. The Euler-Lagrange equation of the above
functional is nonlinear. It is solved in [5] by alternate minimization: in each step of
the iterative procedure, (7) is minimized with respect to only one of the variables
x or w with the other being kept fixed. Even though the obtained results are good
(see Figures 4 and 8), this full variational approach inevitably involves an intrinsic
drawback that we are going to explain below.

2.4. Critical analysis of the method in Section 2.3. Ideally, an outlier must
be restored using only information from its neighbors which are not outliers. For
instance, if a region in an image is of constant intensity c but contains an outlier
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at pixel location (u, v), we naturally require the restored x̂uv to be equal to c. This
cannot be achieved by any Fy of the form

Fy(x) = ‖Hx− y‖1 + β
∑

(i,j)∈A

∑

(k,l)∈Vij

ϕ(|xij − xkl|)

with a potential function ϕ such that ϕ′(0) = 0. Let us verify this fact when H = I,
i.e. there is no blurring. Suppose that β satisfies β ≥ (

4maxt∈R+ ϕ′(t)
)−1 and that

δ > 0 is the solution to

ϕ′(δ) = 1/(4β) with ϕ′′(δ) > 0. (8)

Note that (8) has a unique positive solution under standard assumptions on ϕ. For
example, for the discrete version of the Mumford-Shah regularization [8],

ϕ(t) =
{

t2 if |t| ≤ √
α,

α otherwise, (9)

we have maxt∈R+ ϕ′(t) = 2
√

α and δ = 1/(8β).
Now for simplicity, consider the example where the true image x is constantly

zero and that the observed data y contains a single outlier at location (u, v) with
magnitude larger than δ, that is

yuv > δ and yij = xij = 0, ∀(i, j) ∈ A \ {(u, v)}.
According to the full variational method described in Section 2.3, the denoised x̂
minimizes Fy as given in (5) with H = I and Φ of the form (4). Following a
derivations similar to [25], we will get

x̂uv = δ > 0, and x̂ij = 0, ∀(i, j) ∈ A \ {(u, v)}. (10)

In other words, the outlier is not removed, and its value is only reduced to δ > 0.
Notice that this result does not fit the prior since the prior recommends that x̂uv

equals its neighbors. We conclude that the full variational approach cannot restore
the outliers correctly in general. We note that although we establish this conclusion
for the case H = I, since deblurring is generally an ill-posed process, these errors
can only be amplified in the restoration when H 6= I.

3. Two-phase Approach. As sketched in the introduction, our approach consists
of two phases:

1. Accurate detection of the location of impulse noise (the outlier candidates)
using a median-type filter.

2. Edge-preserving restoration that deblur and denoise simultaneously the data
samples which are not outlier candidates.

These phases are explained in details below.

3.1. Outlier detection. Whenever H 6= I, edges and other high frequency fea-
tures are smoothed out. Hence they are not as prominent as the outliers in the
blurred image Hx. This suggest that median-type filtering can efficiently detect
the locations of the outliers. See [2] for the review of median-type filters. Which
median-type filter to choose as an outlier detector depends on the kind of the im-
pulse noise. Based on the experiments in [10, 11], we use the adaptive median
filter (AMF) [20] to detect salt-and-pepper noise and the adaptive center-weighted
median filter (ACWMF) [21] for random-valued impulse noise. We emphasize that
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other impulse noise filters, e.g., ROAD statistic [15], can also be used as long as
they can provide good outlier detection.

Denote by z ∈ Rm×m the result obtained by applying the median-type filter to
the blurred and noisy image y. As seen already in Figures 3(b) and (d), if we just
deblur z, we will get spurious circles. Instead the filtered data z will only be used
to determine the outlier candidate set N—the data samples that are likely to be
contaminated with impulse noise.

• For salt-and-pepper noise:

N = {(i, j) ∈ A : zij 6= yij and yij ∈ {dmin, dmax}} , (11)

• For random-valued impulse noise:

N =
{
(i, j) ∈ A : zij 6= yij

}
. (12)

Accordingly, the set of data samples that are likely to be uncorrupted with impulse
noise is defined as U = A \ N .

3.2. Restoration from outlier-free data using a variational method. The
example developed in Section 2.4 clearly shows that outliers should be replaced in
accordance with the prior. In fact, the data samples yij with (i, j) ∈ N do not carry
information of the true image. Their estimates zij provided by a median-type filter
inevitably only combine information between outliers and their neighbors. They
do not carry any information and in addition they contain errors that do not fit
the model for Gaussian noise in ỹ assumed in (1). Hence they can only disrupt
the deblurring stage. Indeed, the harmful effect they produce on the solution can
be observed in Figures 3(b) and (d). The best we can do is to ignore all yi,j with
(i, j) ∈ N since they are harmful for the subsequent inversion step. The restoration
is then done using only the incomplete data set yij with (i, j) ∈ U .

These data samples may still contain a few outliers of small amplitude as no
median-type filters are perfect impulse noise (outlier) detectors. They may also be
corrupted with Gaussian noise if σ > 0 in (1). The resultant inverse problem is
heavily ill-posed. We solve it by minimizing a functional of the form

∑

(i,j)∈U

∣∣[Hx− y]ij
∣∣p + β

∫

Ω\Γ
|∇x|2 + α

∫

Γ

dσ, p = 1, 2. (13)

An essential difference with (3) and (5) is that the data-fidelity term here involves
only data samples indexed by U . The choice of the norm (p = 1 or 2) will be
discussed in the next section. Following [4, 6], we use the Mumford-Shah regular-
ization functional which is well known to produce solutions involving neat edges
separating smoothly varying regions. It was shown in [6] that the Mumford-Shah
regularizer can be viewed as an extended line process. It reflects spatial organiza-
tion properties of the image edges that do not appear in the common line process or
anisotropic diffusion. This allows one to distinguish outliers from edges and hence
leads to superior experimental results. An easy mathematical explanation for dis-
crete images can be found e.g. in [26]. So it describes real-world images better than
total variation or other convex regularizers. The price to pay is that the energy in
(13) is non-convex and may exhibit numerous local minimizers.

Remark 1. Let us notice that the functional (13) is not suited for denoising (when
H = I). In the case of denoising under impulse noise, all noisy pixels must be
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Table 1. Choice of the data-fidelity in the second phase.

Impulse Noise
Salt-and-Pepper Random-valued

σ = 0 p = 1 p = 1Gaussian Noise
σ > 0 p = 2 p = 1 or p = 2

restored—these are most of the pixels belonging to N which is the complement of
U ! Indeed, in [10, 11], we used for the restoration step a functional of the form

∑

(i,j)∈N

∣∣xij−yij

∣∣+β
∑

(i,j)∈N


2

∑

(k,l)∈Vij∩U
ϕ(|xij − ykl|) +

∑

(k,l)∈Vij∩N
ϕ(|xij − xkl|)


 .

(14)
The first term in (14) is an `1 norm which helps to retrieve some useful pixels
remaining in N while the regularization term is restricted only on N (observe that
the first sum in the regularization has terms like (ϕ(|xij−ykl|)) in order to fit noisy
pixels xij of N to neighboring noise-free samples ykl ∈ U .

In the actual context of deblurring, the second phase is to solve an ill-posed
inverse problem in presence of noise, which would be more instable if we include
the outliers or some (inevitably) wrong estimates of them. On the other hand, the
regularization have to hold on the whole image since H is non local operator, hence
each data sample results from the contribution of a large number of pixels of the
underlying image.

4. Choice of the Data Fidelity. We choose p = 1 or p = 2 in (13) depending
on the kind of noise remaining in {yij : (i, j) ∈ U}. They are summarized in Table
1 and are explained in the following.

4.1. Salt-and-pepper noise. The AMF filter is a good detector for salt-and-
pepper noise [10], so the data indexed by U are almost free of outliers.

4.1.1. Data without Gaussian Noise (σ = 0 in (1)). Almost all data samples in U
are clean, so we wish to have exact data fitting for them. This can be done by ‖ · ‖1
because it was shown in [25] that under mild assumptions and a pertinent choice
of β, the minimizer x̂ ensures (Hx̂)ij = yij when yij is not corrupted while the
remaining pixels (Hx̂)ij 6= yij correspond to the regularization term. It is known
that ‖ · ‖22 can not do this, see [24] for a detailed explanation. Furthermore, ‖ · ‖1
is more sensitive to small errors than ‖ · ‖22, which will lead the data-fitting errors
of ‖ · ‖1 to be smaller than that of ‖ · ‖22.
4.1.2. Data with Gaussian Noise (σ > 0 in (1)). All pixels in U are noisy but the
noise is almost Gaussian and white. Therefore the ‖ · ‖22 data fidelity should be
used.

4.2. Random-valued impulse noise. For the random-valued impulse noise, we
use the adaptive center-weighted median filter (ACWMF) to detect the outlier
candidates in the first phase. Random-valued impulse noise is much more difficult
to discriminate than salt-and-pepper noise. Thus there will still be some outliers
undetected and contained in U after the detection by ACWMF.
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Table 2

The left is the image for testing. The right is the table showing the values of
PSNR1 − PSNR2, where PSNRi, i = 1, 2 are the PSNR of the restoration by

minimizing (13) for p = 1 and p = 2 respectively.

σ \ r 10% 25% 40% 55%
1 3.5 6.2 6.9 5.2
5 −1.2 2.8 2.0 4.3
10 −0.4 −0.9 1.0 2.1
15 −0.8 −0.3 1.1 1.9
20 −1.0 −0.1 −0.1 2.1

4.2.1. Without Gaussian noise (σ = 0). The set U contains basically data samples
that are free of noise, but also possibly some outliers with values close to those of
their neighbors. In order to exactly fit the outlier free data, ‖ · ‖1 is a better choice
due to the property stated above in case A.1. Moreover, it is more insensitive to
the exact value of the outliers than ‖ · ‖22, see [24, 25] for details.

4.2.2. With Gaussian noise (σ > 0). Detecting the impulse noise samples in this
case is really challenging since small outliers are similar to the Gaussian noise. The
set U obtained at the output of the ACWMF still contains undetected outliers.
Even though they may be negligible, they alter the distribution of the Gaussian
noise. On the one hand, the remaining outliers being small amplitude require us
to use ‖ · ‖1 as data fidelity. On the other hand, it is better to use ‖ · ‖22 to handle
the Gaussian noise. According to the levels of the impulse noise and the Gaussian
noise, better results can be obtained using either ‖·‖1 or ‖·‖22. To guide our choice,
we experimentally compare these two data fidelities for an image with edges as
shown on the left side of Table 2. In Table 2, we report the differences in PSNRs
(see (20)) between these two data fidelities. As expected, ‖ · ‖1 is better when r is
big and σ is small, while ‖ · ‖22 is better when r is small and σ is big. We choose
the data fidelity according to the signs in Table 2. When the sign is positive we use
‖ · ‖1, and ‖ · ‖22 otherwise. However, it still remains an open question to develop
a better impulse noise detector as well as a better fidelity for this case. A possible
choice is to use ‖·‖p

p for 1 < p < 2 to compromise between ‖·‖1 and ‖·‖22. However,
the behavior of a data-fidelity for 1 < p < 2 along with regularization is not yet
understood in the literature, so we only employ either ‖ · ‖1 or ‖ · ‖22 as the data
fidelity in our experiments.

5. Numerical implementation. Let χ be the characteristic function of the set
U defined as

χij =

{
1 if (i, j) ∈ U ,

0 otherwise,

and ◦ stand for the Hadamard product (entry-wise product). The functional in
(13) can be approximated by

∑

(i,j)∈A
χij [Hx− y]2ij + β

∫

Ω

w2|∇x|2 + α

∫

Ω

(
ε|∇w|2 +

(w − 1)2

4ε

)
, for p = 2 (15)
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and

∑

(i,j)∈A

√
χij [Hx− y]2ij + η + β

∫

Ω

w2|∇x|2 + α

∫

Ω

(
ε|∇w|2 +

(w − 1)2

4ε

)
, for p = 1

(16)
respectively, where η, ε ' 0. Here the Mumford-Shah functional is approximated
by the Γ-convergence. It is explained in [14] that why such an approximation be-
comes more ideal for image restoration than for the original segmentation task of
the Mumford-Shah functional. Moreover, as explained in [6], the Mumford-Shah
regularization with Γ-convergence has the theoretical and mathematical advan-
tages of being robust to large gradients (and noise) while preferring structured or
smooth edges. However, the alternative edge-preserving stabilizer, for example,
the total variation approach, is less robust to outliers. Another advantage of the
Mumford-Shah regularization terms with Γ-convergence is that they do not induce
nonlinearity. Note in (16), we have smoothed the 1-norm by the parameter η.

The Euler-Lagrange equation of (15) is




2βw|∇x|2 + α

(
w − 1

2ε

)
− 2εα∆w = 0,

2H∗(χ ◦ (Hx− y))− 2β∇ · (w2∇x) = 0,
(17)

where H∗ is the adjoint operator of H. Following the examples of [5, 14], the two
equations are solved alternately. For the first equation, we fix x and solve a linear
elliptic equation with respect to w. For the second equation, we fix w, and solve a
linear equation with respect to x. The above process is iterated until convergence.
The two equations are discretized by finite difference schemes.

In order to solve the discretized linear equations effectively, preconditioners
should be applied. For the first equation in (17), we use the modified incomplete
LU (MILU) preconditioner, which is very effective in solving elliptic equations. For
the second equation, however, good preconditioner can not be found, since local
information (differential operator) and global information (blurring operator) are
mixed together. We do not use any perconditioner in the solver of the second
equation.

The Euler-Lagrange equation for (16) is




2βw|∇x|2 + α

(
w − 1

2ε

)
− 2εα∆w = 0,

H∗(χ ◦W (x) ◦ (Hx− y))− 2β∇ · (w2∇x) = 0,
(18)

where

[W (x)]ij =
1√

χij [Hx− y]2ij + η
.

Similarly, the two equations in (18) are solved alternatively. However, the second
equation is no longer linear with respect to x when w is fixed. Though there are
other popular ways such as half-quadratic minimization [16, 17, 27] to linearize this
equation, we solve it by a simple fixed point iteration: given xk, we get xk+1 by
solving

H∗(χ ◦W (xk) ◦ (Hxk+1 − y))− 2β∇ · (w2∇xk+1) = 0. (19)
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The equations are again discretized by finite difference schemes. MILU precondi-
tioner is used in solving the first equation in (18), and no preconditioner is used in
solving (19).

6. Simulations. In this section, numerical examples are presented to illustrate
the effectiveness of our two-phase deblurring method by comparing it with the full
variational methods in [4, 5, 6]. The simulations are performed in Matlab 7.01
(R14) on a PC. To assess the restoration performance quantitatively, we evaluate
the peak signal to noise ratio [9] defined as

PSNR = 10 log10

2552

1
n2

∑
(i,j)∈A(x̂ij − xij)2

, (20)

where x̂ij and xij are the pixel values of the restored image and of the original
image, respectively.

The test images are all 256-by-256 gray level images. Note that there are several
parameters to be tuned in both our method and the full variational deblurring
method, and we must choose optimal parameters in order to make the comparisons
fair. We have tried our best to determine the optimal parameters. We first fix the
1-norm stabilizer η in (16) to 0.0001. The remaining three parameters α, β, ε are
determined by fixing two parameters and adjusting the remaining one such that it
gives the best restoration measured in PSNR. The adjusted parameters are tuned
one by one. This procedure is repeated several times for each parameter until they
become stable. We use the same parameters for different images blurred by the
same convolution kernel and corrupted by the same noise level. We note that it is
an old and open problem for choosing the optimal parameters, even in the simpler
case where there is no impulse noise.

First we discuss the case with salt-and-pepper noise. The comparisons of our
method and the full variational deblurring method [4, 5, 6] are shown in Figure 4
and Table 3. In the first phase of our method, the outlier candidate set N , defined
in (11), is detected by the AMF algorithm [20]. The maximum window size we
used in AMF is 19 throughout the test. Obviously from Figure 4, our two-phase
deblurring method is better than the variational method. In general, the PSNR of
the restoration by our method is about 2 to 6 dB higher than that by the variational
method, and our two-phase method can handle noise level as high as 90%, while
the variational method fails. In Figures 5 and 6, we show the results of our method
for other images and for other blurring kernels. We see that our method works
well for a wide range of images and blurring kernels. In Figure 7, we show the
results when both Gaussian noise and salt-and-pepper noise are presented. We

also report σ̃ =

√∑
(i,j)∈U [Hx̂−y]2ij

|U| , which is supposed to be comparable to σ, the

standard deviation of the Gaussian noise. We see that σ̃ is comparable to σ when
the impulse noise ratio is low, and increases with the impulse noise ratio. In our
experiments the parameters are chosen to optimize the quality of restored images.
If we want σ̃ to be close to σ, we may need to use other parameters and the resulting
deblurred image will not be as good.

Next we discuss the case of random-valued impulse noise. The outlier is detected
by ACWMF [21], which is successively performed four times for every image. The
parameters required in ACWMF are chosen to be those used in [11]. Once ACWMF
is performed four times, we define the outlier candidate set N by (12), and then
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Figure 4. Lena image blurred with out-of-focus kernel of radius
3, and then corrupted by salt-and-pepper noise with noise levels
30%, 50%, 70%, and 90% respectively. Top: The restored image
by our method, and the parameters we used are [α = 0.0002, β =
0.0002, ε = 0.001], [α = 0.0002, β = 0.0002, ε = 0.0005], [α =
0.0005, β = 0.0005, ε = 0.0002], [α = 0.001, β = 0.001, ε = 0.0001]
respectively. Bottom: The restored image by the full variational
method [4, 5, 6], and the parameters we used are [α = 0.005, β =
0.002, ε = 0.0002], [α = 0.01, β = 0.01, ε = 0.0001], [α = 0.01, β =
0.01, ε = 0.00005], [α = 0.01, β = 0.01, ε = 0.00005] respectively.

Figure 5. Restoration of our method for images blurred with out-
of-focus kernel of radius 3, and then corrupted by salt-and-pepper
noise s = 70%. The parameters used are the same as in Figure 4
for s = 70%.

perform the second phase. Again we compare our two-phase method with the
full variational method in [4, 5, 6]. The results are shown in Figure 8 and Table
4. We can see from the figures that our method is again much better than the
variational method. The PSNR of the restoration by our method is about 2 to 4
dB higher than that by the variational method. Even for blurred images corrupted
by 55% random-valued noise, our method can give a very good restoration, while
the variational method fails. In Figures 9 and 10, our method for other images and
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Table 3

The PSNR (dB), computing time (seconds), and the number of iterations of the
two-phase method and the full variational method. The blurring kernel is the

out-of-focus kernel of radius 3.
Two-Phase Method Full Variational Method

TimeImage s
PSNR

Phase 1 Phase 2
# iter PSNR Time # iter

30% 35.9 0.2 504 3 30.0 629 4
50% 32.7 0.3 496 3 27.3 721 7
70% 30.1 0.5 488 3 25.3 625 8

Lena

90% 26.7 10.5 623 4 21.5 730 9
bridge 26.2 0.6 514 3 22.7 716 10
baboon 24.7 0.7 452 3 22.5 409 7
boat 26.7 0.6 488 3 23.4 553 6

goldhill

70%

28.4 0.5 402 3 25.1 558 7

Figure 6. Lena image blurred with different kernels, and then
corrupted by salt-and-pepper noise s = 70%. From left to right :
the blurred image with Gaussian kernel (generated by MATLAB
command fspecial(’Gaussian’,[7 7],1)) with no noise added
yet, and the restored image by our method with PSNR 30.6dB; the
blurred image with motion kernel (generated by MATLAB com-
mand fspecial(’motion’,9,1)) with no noise added yet, and the
restored image by our method with PSNR 28.0dB. The parame-
ters used are [α = 0.002, β = 0.002, ε = 0.001], [α = 0.005, β =
0.005, ε = 0.001] respectively.

for other blurring kernels are given. Again our method works well for a wide range
of images and blurring kernels. In Figure 11, we give the restoration of blurred
images with both random impulse noise and Gaussian noise. We also report σ̃ in
the figure. Again, we see that σ̃ is comparable to σ when the impulse noise ratio is
low, and increases with the impulse noise ratio.

For the computational efficiency, in Tables 3 and 4 we show the computational
times and the numbers of iterations for both the proposed two-phase method and
the full variational method. We see that in the two-phase method, the second phase
consumes majority of the CPU times. Compared to the full variational method,
our proposed two-phase method has similar computational efficiency. In fact, for
salt-and-pepper noise, the two-phase method is even faster than the full variational
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Figure 7. Lena image blurred with out-of-focus kernel of radius 3,
and then corrupted by Gaussian noise with σ = 5 (SNR=26.9dB)
and salt-and-pepper noise with s = 30%, 50%, 70%, and 90% re-
spectively. From left to right : The restored image by our method
with PSNRs 27.2dB, 26.9dB, 26.4dB, and 24.7dB respectively. The
parameters we used are all [α = 0.05, β = 0.05, ε = 0.0002]. The σ̃
is 6.5, 6.8, 7.5 and 11.9 respectively.

Figure 8. Lena image blurred with out-of-focus kernel of radius
3, and then corrupted by random-valued noise with noise levels are
10%, 25%, 40%, and 55% respectively. Top: The restored image
by our method, and the parameters we used are [α = 0.0005, β =
0.0005, ε = 0.001], [α = 0.001, β = 0.001, ε = 0.0005], [α =
0.002, β = 0.002, ε = 0.0005], [α = 0.005, β = 0.005, ε = 0.0001]
respectively. Bottom: The restored image by the full variational
method, and the parameters we used are [α = 0.001, β = 0.001, ε =
0.0005], [α = 0.005, β = 0.005, ε = 0.0005], [α = 0.005, β =
0.005, ε = 0.00005], [α = 0.01, β = 0.01, ε = 0.0001] respectively.

method. For both methods, the numbers of iterations are all very small. As we
have pointed out in Section 5, in each iteration the most time-consuming step lies
in the solver for the second equation in (17) or (18). Therefore, in order to improve
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Figure 9. The restorations of our method for images blurred with
out-of-focus kernel of radius 3, and then corrupted by random-
valued impulse noise with r = 40%. The parameters used are the
same as in Figure 8 when s = 40%.

Table 4

The PSNR (dB), computing time (second), and the number of iterations of the
two-phase method and the full variational method. The blurring kernel is the

out-of-focus kernel of radius 3.
Two-Phase Method Full Variational Method

TimeImage r
PSNR

Phase 1 Phase 2
# iter PSNR Time # iter

10% 38.7 7.1 584 3 34.5 625 3
25% 34.4 7.1 606 3 30.6 854 5
40% 31.2 7.1 739 4 27.4 684 6

Lena

55% 27.8 7.1 784 6 24.8 861 8
bridge 27.3 7.0 726 4 24.1 619 7
baboon 25.3 7.1 635 4 23.5 478 6
boat 28.2 7.1 709 4 24.7 538 5

goldhill

40%

29.5 7.0 615 4 26.6 539 6

Figure 10. Lena image blurred with different kernels, and then
corrupted by random-valued impulse noise r = 40%. From left
to right : The restoration of blurred image with Gaussian ker-
nel (generated by MATLAB command fspecial(’Gaussian’,[7
7],1)), and the PSNR is 31.5dB; the restoration of blurred
image with motion kernel (generated by MATLAB command
fspecial(’motion’,9,1)), and the PSNR is 29.8dB. The param-
eters used are [α = 0.002, β = 0.002, ε = 0.0001], [α = 0.002, β =
0.002, ε = 0.0002] respectively.



16 JIAN-FENG CAI, RAYMOND H. CHAN AND MILA NIKOLOVA

Figure 11. Lena image blurred with out-of-focus kernel of radius
3, and then corrupted by Gaussian noise with σ = 5 and random-
valued impulse noise with r = 10%, 25%, 40%, and 55% respec-
tively. From left to right : The restored image by our method
with PSNRs 27.2dB, 27.0dB, 26.7dB, and 25.6dB respectively.
The parameters we used are [α = 0.05, β = 0.05, ε = 0.0002],
[α = 0.01, β = 0.005, ε = 0.0002], [α = 0.01, β = 0.005, ε = 0.0002],
[α = 0.01, β = 0.01, ε = 0.0001] respectively. The functional mini-
mized is (13) for p = 2 for s = 10% and (13) for p = 1 for others
according to Table 2. The σ̃ is 6.5, 7.0, 8.4 and 11.9 respectively.

the computational efficiency, one possible way is to find good preconditioners for
the solver.

We note that in all the cases tested, there are no circles appearing in our restored
images which are common in other approaches (see Figures 2 and 3). We can also
see that in general the two-phase method for salt-and-pepper noise performs better
than for random-valued noise: it can handle salt-and-pepper noise as high as 90%
but random-valued noise for about 55%. One reason is that the former is more
easy to detect than the latter. In fact, for salt-and-pepper noise, most of the noisy
pixels are much more dissimilar to the uncorrupted pixels, hence filters like AMF
can detect almost all the outlier positions even when the noise ratio is very high.
However, there is no good detector for random-valued noise when the noise ratio is
high. The performance for random-valued noise can be improved if a better outlier
detector can be found. Finally, we remark that for both types of impulse noise,
we can use ACWMF as noise detector. However, since AMF can already give a
good detection for salt-and-pepper noise, we choose it due to its efficiency when
compared with ACWMF; see Tables 1 and 2 also the CPU times for the first phase.

7. Conclusions. In this paper, we propose a powerful approach for restoring
images blurred and corrupted with Gaussian and impulse noise. Our two-phase
method can give excellent restored images, with 2 to 6 dB higher than a full varia-
tional method, and can handle extremely high noise level, with s = 90% or r = 55%.
In the case of random-valued impulse noise, works are underway to find better out-
lier detectors and better data fidelity so as to improve our method further. Also
the two-phase deblurring method developed in this paper may be extended to blind
convolution and to segmentation under impulse noise plus Gaussian noise based
on the nature of Mumford-Shah functional. Furthermore, some theoretical as-
pects of the proposed method, such as the convergence and convergence rate of the
Euler-Lagrange equations, and the preconditioners for the linear systems, can be
explored. Another possible extension is deblurring color images under impulse plus
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Gaussian noise. One difficulty is how to modify the regularizer—the Mumford-Shah
functional—for color images. It has been discussed in [4]. With this, the two-phase
deblurring method can be extended to color images. Another difficulty is the num-
ber of possible noise models for color images, e.g. whether the impulse noise affects
one channel or all, and whether the noise level are the same for all channels, etc.
These are future research topics.
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