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Summary. Recently, a powerful two-phase method for removing impulse noise has
been developed. It gives a satisfactory result even for images with 90% pixels cor-
rupted by impulse noise. However, the two-phase method is not computationally
efficient, because it requires the minimization of a non-smooth functional in the sec-
ond phase, which is done by a relaxation-based method. In this paper, we remove
the non-smooth term from the functional, and call for the minimization of a smooth
one. The minimizer is then found by using a conjugate gradient method proposed
by J. Sun and J. Zhang. We prove the global convergence of the conjugate gradient
type method applied to our functional. Simulation results show that our method is
several times faster than the relaxation-based method when the noise ratio is high.

1 Introduction

Impulse noise is caused by malfunctioning pixels in camera sensors, faulty
memory locations in hardware, or transmission in a noisy channel [2]. Let x
denote the original image and [smin, smax] denote the dynamic range of x. The
impulse noise model with noise ratio (error probability) p for a noisy image y
is

yi,j =

{
ri,j , with probability p,
xi,j , with probability 1− p,

where xi,j and yi,j are the gray levels of the original image x and the noisy im-
age y at pixel location (i, j). There are two main models to represent impulse
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noise: the salt-and-pepper noise and the random-valued noise. For images cor-
rupted by salt-and-pepper noise, ri,j can only take values smin or smax while
for random-valued noise, ri,j can be any identically distributed, independent
random number in [smin, smax].

There are two popular types of methods for removing impulse noise. One
is the median filter and its variants [7, 13]. It can detect the noise pixels
accurately but it restores them poorly when the noise ratio is high. The gray
levels of uncorrupted pixels are unchanged. The recovered image may loose
its details and be distorted. Another procedure, the variational approach, is
capable of retaining the details and the edges well but the gray level of every
pixel is changed including uncorrupted ones [14].

Recently, a two-phase scheme for removing impulse noise has been pro-
posed in [4, 5]. This scheme combines the advantages of both the median-type
filters and the variational approach. In the first phase, a median-type fil-
ter is used to identify pixels which are likely to be contaminated by noise
(noise candidates). In the second phase, the image is restored by minimizing
a specialized regularization functional that applies only to those selected noise
candidates. Therefore, the details and edges of the image can be preserved,
and the uncorrupted pixels are unchanged.

The two-phase scheme is powerful even for noise ratio as high as 90%,
see [4]. However, the functional to be minimized in the second phase is non-
smooth, and it is costly to get the minimizer. Here we modify the functional
by removing the non-smooth data-fitting term to get a smooth one. Therefore,
many sophisticated methods developed for smooth optimization are applica-
ble.

In this paper, conjugate gradient (CG) type methods are applied to mini-
mize the smooth functional. Based on the results in [18], we apply CG methods
in which the line search step is replaced by a step whose length is determined
by a special formula. We prove that such CG methods are globally convergent
for our minimization functional. Simulation results show that when the noise
ratio is high, our method is several times faster than the relaxation method
used in [4, 5].

The outline of the paper is as follows. In Section 2, we review the method
presented in [4, 5]. In Section 3, we present our method. In Section 4, we give
the convergence results of the method. In Section 5, simulation results are
presented and finally in Section 6 we conclude the paper.

2 Review of Two Phase Methods

In this section we give a brief review on the two-phase method for removing
salt-and-pepper impulse noise [4] and random-valued impulse noise [5]. The
first phase is the detection of the noise pixels and the second phase is the
recovering of the noise pixels detected in the first phase.
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The First Phase: Detection of Noise Pixels

The first phase is the detection of the noise pixels. For salt-and-pepper noise,
this is accomplished by using the adaptive median filter (AMF) [13] while for
random-valued noise, it is accomplished by using the adaptive center-weighted
median filter (ACWMF) [7]. Since we are concerned with accelerating the
minimization procedure in the second phase, we only consider salt-and-pepper
noise in the paper. The method can be applied equally well to random-valued
noise.

The Second Phase: Recovering of Noise Pixels

We first give some notations. Let X be an image of size M -by-N and A =
{1, 2, 3, . . . ,M}×{1, 2, 3, . . . , N} be the index set of the image X. Let N ⊂ A
be the set of indices of the noise pixels detected from the first phase and c be
its number of elements. Let Vi,j be the set of the four closest neighbors of the
pixel at position (i, j) ∈ A. Let yi,j be the observed pixel value of the image at
position (i, j). In [4], the recovering of noise pixels calls for the minimization
of the functional:

Fα(u) =
∑

(i,j)∈N

[
|ui,j − yi,j |+

β

2
(
2 · S1

i,j + S2
i,j

)]
, (1)

where

S1
i,j =

∑
(m,n)∈Vi,j\N

ϕα(ui,j − ym,n), (2)

S2
i,j =

∑
(m,n)∈Vi,j∩N

ϕα(ui,j − um,n), (3)

ϕα is an edge-preserving function and u = [ui,j ](i,j)∈N is a column vector
of length c ordered lexicographically. We assume that the edge-preserving
function ϕα is: (a) twice continuously differentiable, (b) ϕ′′α > 0, and (c) even.
Examples of such ϕα(t) are

√
t2 + α and log(cosh(α t)) where α > 0 is a

parameter, see [6] and [11]. From the above properties, we can conclude that
ϕα(t) is strictly increasing with |t| and coercive, i.e. ϕα(t)→∞ as |t| → ∞.

In [4], (1) is minimized by using a 1-D relaxation method. More precisely,
at each iteration, we minimize (1) with respect to only one unknown while all
the other unknowns are fixed. The procedure is repeated until convergence.
In each iteration, a 1-D nonlinear equation is to be solved. Newton’s method
with special initial guess that guarantees quadratic convergence is used to
solve these nonlinear equations, see [3] for detail.
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3 Our Method

The function Fα in (1) is a non-smooth functional because of the |ui,j − yi,j |
term — the data-fitting term. In our method, we first remove this term. It is
motivated by the following two facts:

1. The data-fitting term keeps the minimizer u close to the original image
y so that the pixels which are uncorrupted in the original image are not
altered. However, in the two-phase method the functional Fα is cleaning
only the noise pixels and the uncorrupted pixels are unchanged. Hence,
the data-fitting term is not required. This fact is verified numerically in
[4].

2. Removing the data-fitting term will make Fα to be a smooth functional
which can be minimized efficiently.

Therefore, the functional that we are minimizing in this paper is

Fα(u) =
∑

(i,j)∈N

(
2 · S1

i,j + S2
i,j

)
, (4)

where S1
i,j and S2

i,j are the same as those defined in (2) and (3). Simulation
results in Section 5 show that the minimizers of (1) and (4) attain the same
signal-to-noise ratio.

The minimization methods we use to solve (4) is the conjugate gradient
(CG) type method proposed in [18]. It does not need the Hessian matrix nor
perform the line search. The resulting CG method can find the minimizer more
efficiently by avoiding these time consuming tasks. We remark that the Hessian
of (4) has not any special structure, so it is difficult to do preconditioning.
Therefore, we only consider non-preconditioned CG here. We will give a very
brief description of the method here.

The Minimization Algorithm

The general conjugate gradient method applied to minu Fα(u) has the follow-
ing form. Given u0, let

dk =
{
−gk for k = 0,
−gk + βkdk−1 for k > 0, (5)

uk+1 = uk + αkdk, (6)

where gk = ∇Fα(uk), αk is determined by line-search and βk is chosen so
that dk is the k-th conjugate direction when the function is quadratic and the
line search is exact. Some of the well-known formula for βk are:
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βFRk =
‖gk‖2

‖gk−1‖2
(Fletcher-Reeves [10]), (7)

βPRk =
gTk (gk − gk−1)
‖gk−1‖2

(Polak-Ribière [15]), (8)

βHSk =
gTk (gk − gk−1)

dTk−1(gk − gk−1)
(Hestenes-Stiefel [12]), (9)

βCDk =
‖gk‖2

−dTk−1gk−1
(The Conjugate Descent Method [9]),(10)

βDYk =
‖gk‖2

dTk−1(gk − gk−1)
(Dai-Yuan [8]). (11)

In [18], it is proved that if Fα satisfies the following Assumption 1 and αk
is chosen according to a special formula (see (14) below), then the resulting
CG method is globally convergent.

Assumption 1

1. Let ∆ = {u | Fα(u) ≤ Fα(u0)}. Then there exists a neighborhood Ω of ∆
such that ∇Fα is Lipschitz continuous on Ω, i.e. there exists a Lipschitz
constant µ > 0 such that

‖∇Fα(u)−∇Fα(v)‖ ≤ µ‖u− v‖, ∀u,v ∈ Ω, (12)

2. Fα is strongly convex in Ω, i.e. there exists a λ > 0 such that

(∇Fα(u)−∇Fα(v))T (u− v) ≥ λ‖u− v‖2, ∀u,v ∈ Ω. (13)

In that case, we choose {Qk} to be a sequence of c-by-c positive definite
matrices such that

νmindTd ≤ dTQkd ≤ νmaxdTd, ∀ d ∈ Rc ,

with νmin > 0 and νmax > 0. Then the step length αk is defined as

αk = − δ gTk dk
dTkQkdk

, where δ ∈ (0,
νmin

µ
). (14)

If Fα satisfies Assumption 1, the sequence {uk} defined by (5), (6) and
(14) is globally convergent for all choices of βk in (7) – (11), see [18].

4 Convergence of the Method

The minimization of (4) is a constrained minimization problem as the mini-
mizer must lie in the dynamic range [smin, smax]c = {u ∈ IRc : smin ≤ ui ≤
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smax, i = 1, · · · , c}. We are going to show that it is indeed a convex un-
constrained minimization problem. In fact, we show that the functional Fα is
strictly convex in IRc and its minimizer lies in [smin, smax]c. Moreover, we show
that Fα satisfies Assumption 1, hence the CG method is globally convergent.

To show that Fα is strictly convex we first derive some properties of the
Hessian matrix. As stated before,

Fα(u) =
∑

(i,j)∈N

(
2 · S1

i,j + S2
i,j

)
.

Because ϕα is an even function, we get

(OFα(u))(i,j)∈N

= 2
∑

(m,n)∈Vi,j\N

ϕ′α(ui,j − ym,n) + 2
∑

(m,n)∈Vi,j∩N

ϕ′α(ui,j − um,n).

Hence

(
O2Fα(u)

)
((i,j),(p,q))

=


2
(
R1
i,j +R2

i,j

)
, if (i, j) = (p, q),

−2ϕ′′α(ui,j − up,q), if (p, q) ∈ Vi,j ∩N ,
0, otherwise,

(15)
where

R1
i,j =

∑
(m,n)∈Vi,j\N

ϕ′′α(ui,j − ym,n),

R2
i,j =

∑
(m,n)∈Vi,j∩N

ϕ′′α(ui,j − um,n).

Consider another matrix Gα of size MN -by-MN defined by

(Gα)((i,j),(p,q))

,



2
(
R1
i,j +R2

i,j

)
, if (i, j) = (p, q) ∈ N ,

2
(
T 1
i,j + T 2

i,j

)
, if (i, j) = (p, q) 6∈ N ,

−2ϕ′′α(yi,j − up,q), if (i, j) 6∈ N , (p, q) ∈ N and (p, q) ∈ Vi,j ,
−2ϕ′′α(ui,j − yp,q), if (i, j) ∈ N , (p, q) 6∈ N and (p, q) ∈ Vi,j ,
−2ϕ′′α(ui,j − up,q), if (i, j) ∈ N , (p, q) ∈ N and (p, q) ∈ Vi,j ,
−2ϕ′′α(yi,j − yp,q), if (i, j) 6∈ N , (p, q) 6∈ N and (p, q) ∈ Vi,j ,
0, otherwise,

where

T 1
i,j =

∑
(m,n)∈Vi,j\N

ϕ′′α(yi,j − ym,n),

T 2
i,j =

∑
(m,n)∈Vi,j∩N

ϕ′′α(yi,j − um,n).
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Then since ϕ′′α > 0, Gα has exactly the same graph as the 2D Laplacian, and
thus is irreducible. In addition, Gα has row sum being zero, except on rows
corresponding to pixels on the boundary and in that case the row sum is
strictly greater than zero. Hence Gα is irreducibly diagonally dominant and
so by Corollary 1.22 of [19], Gα is positive definite.

Now, note that ∇2Fα(u) is a principal sub-matrix of Gα, formed by delet-
ing the rows and columns in Gα corresponding to the pixels not in N . Thus
∇2Fα(u) is also positive definite.

We summarize the results below:

Theorem 1. For any given u ∈ IRc, the matrix ∇2Fα(u) defined in (15) is
positive definite, i.e.,

λmin(∇2(Fα(u))) > 0,

where λmin(∇2(Fα(u))) is the minimal eigenvalue of ∇2(Fα(u)).

Theorem 2. The functional Fα given in (4) has only one local minimum
which is also the global minimum. The global minimizer u∗ of Fα is always
within the dynamic range, i.e. u∗ ∈ [smin, smax]c.

Proof. By Theorem 1, Fα is strictly convex. Then, a local minimum of Fα
is also a global minimum and there exists at most one global minimum, see
Proposition B.10 [1].

To show that the global minimum exists, consider the box

S = {u ∈ IRc | a ≤ ui ≤ b, i = 1, . . . , c}

with a < smin and smax < b. Since S is compact and Fα is continuous and
strictly convex, there exists the global minimizer u∗ =

(
u∗i,j
)
(i,j)∈N of Fα over

S. Now we show that u∗ lies in the interior of S, and hence u∗ is the global
minimizer of Fα over IRc. To this end, note that if u∗ belongs to the boundary
of S, then there exists a point u in the interior of S with Fα(u) < Fα(u∗).
Indeed, we define

ui,j =


smax, smax < u∗i,j ≤ b,
smin, a ≤ u∗i,j < smin,
u∗i,j , otherwise.

(16)

Then we have{
|ui,j − up,q| ≤ |u∗i,j − u∗p,q|, (p, q) ∈ Vi,j ∩N ,
|ui,j − yp,q| ≤ |u∗i,j − yp,q|, (p, q) ∈ Vi,j \ N .

(17)

Since at least one of the u∗i,j is on the boundary of S and all the yp,q are
in [smin, smax], we can conclude that at least one of the equalities in (17) is
a strict inequality. Since Fα is a sum of terms of the form ϕα(v − w) and
ϕα(v − w) is strictly increasing w.r.t the difference |v − w|, Fα(u) < Fα(u∗).
Hence u∗ cannot be the minimizer of (4) over S. Thus the minimizer u∗ must
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be in the interior of S, and it is therefore also the global minimizer of Fα in
IRc.

Finally, to show that u∗ ∈ [smin, smax]c, we proceed as above. In particular,
if some components of u∗ are outside [smin, smax], we define a new point u as
in (16). Then again we will have a contradiction that Fα(u) < Fα(u∗). ut

Theorem 2 shows that the minimization problem can be viewed as an
unconstrained minimization problem. Next we show that Fα satisfies the As-
sumption 1.

Theorem 3. Let {uk} be the sequence generated by the conjugate gradient
method. Then, the function Fα defined in (4) satisfies (12) and (13).

Proof. Since ϕα is continuous and coercive, Fα(u) → ∞ as ‖u‖ → ∞. To
show this, we proceed by contradiction and suppose that Fα(u) is bounded
for ‖u‖ → ∞. Note that if there is one noisy pixel |ui,j | → ∞ having at
least one non-noisy neighbor, then S1

i,j → ∞ and consequently Fα(u) → ∞.
Therefore, if Fα(u) is bounded for ‖u‖ → ∞ we conclude that for each noisy
pixel |ui,j | → ∞ all its neighbors are noisy and tend to infinity at the same
rate as |ui,j |. Repeating this argument for each of such neighbors, we conclude
that all the pixels are noisy, i.e. A ≡ N which is impossible.

Since Fα(u) → ∞ as ‖u‖ → ∞, given the initial guess u0, the level set
∆ = {u | Fα(u) ≤ Fα(u0)} must be bounded. Let (u0)k,l be an arbitrary
component of u0, and

z = max
{
|(u0)k,l|, max

(i,j)∈Vk,l

|(u0)(i,j)|
}
.

Then we define a new vector w by replacing the entry (u0)k,l by wk,l = 1+3z.
Then, for any neighbors v of (u0)k,l we have

|(u0)k,l − v| < 1 + (|v| − v) + |(u0)k,l|+ |v|
= 1 + |(u0)k,l|+ 2|v| − v ≤ 1 + 3z − v = |wk,l − v|,

and consequently, Fα(u0) < Fα(w). Therefore,

∆ ⊆ Ω ≡ {u | Fα(u) < Fα(w)} .

By the continuity of Fα, Ω is an open set and its closure is

Ω̄ = {u | Fα(u) ≤ Fα(w)} .

Repeating the argument in the first paragraph of this proof, we see that the
closure Ω̄ is also bounded. Moreover,

‖∇2Fα(u)‖ ≤ sup
v∈Ω̄
‖∇2Fα(v)‖ = max

v∈Ω̄
‖∇2Fα(v)‖, for all u ∈ Ω,
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since ∇2Fα(v) is a continuous function of v on the bounded and closed set
Ω̄, hence the supremum can be attained in Ω̄. So by Theorem 9.19 of [16], we
have the desired result (12) by taking µ = maxv∈Ω̄ ‖∇2Fα(v)‖.

By Taylor’s expansion on Fα, we have

Fα(u) = Fα(v) +∇Fα(v)T (u− v) +
1
2

(u− v)T ∇2Fα(ū) (u− v) , (18)

and

Fα(v) = Fα(u) +∇Fα(u)T (v − u) +
1
2

(v − u)T ∇2Fα(v̄) (v − u) , (19)

where ū and v̄ lie on the line segment with end-points u, v ∈ Ω. Adding up
(18) and (19) and rearranging, we have

(∇Fα(u)−∇Fα(v))T (u− v) =
1
2

(u− v)T
(
∇2Fα(ū) +∇2Fα(v̄)

)
(u− v) .

Note that for a positive definite matrix A,

xTAx ≥ λmin(A)xTx = λmin(A)‖x‖2,

where λmin(A) is the smallest eigenvalue of A. Hence, together with the result
of Theorem 1, we have:

(∇Fα(u)−∇Fα(v))T (u− v)

≥ 1
2
(
λmin(∇2Fα(ū)) + λmin(∇2Fα(v̄))

)
‖u− v‖2

≥ 1
2
· 2 · inf

z∈Ω̄
λmin(∇2Fα(z))‖u− v‖2

= λ‖u− v‖2,

where λ ≡ infz∈Ω̄ λmin(∇2Fα(z)). Since λmin(∇2Fα(z)) is a continuous func-
tion of z on the closed and bounded set Ω̄ (see Corollary 4.10 in [17]), we have
λ = λmin(∇2Fα(z0)) for some z0 ∈ Ω̄. By Theorem 1, λ > 0. This proves (13).
ut

We conclude by providing a global convergence result of the CG method
applying to (4).

Theorem 4. Let {uk} be the sequence generated by the conjugate gradient
method with αk given in (14). Then, for any choice of βk in (7)–(11), {uk}
converges to the global minimum of Fα.

Proof. By Theorem 9 of [18], limk→∞ ‖∇Fα(uk)‖ = 0. Hence, all the limit
points of {uk} are stationary points of Fα. By Theorem 2, the thesis follows.
ut
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5 Simulation

Throughout the simulations, we use MATLAB 7.01 (R14) on a PC equipped
with Intel Pentium 4 CPU 3.00 GHz and 1,024 MB RAM memory. Our test
images are the 512-by-512 goldhill and lena images. To assess the restoration
performance qualitatively, we use the PSNR (peak signal to noise ratio, see
[2]) defined as

PSNR = 10 log10

2552

1
MN

∑
i, j(x

r
i, j − xi, j)2

,

where xri, j and xi, j denote the pixel values of the restored image and the
original image respectively.

We emphasize that in this paper, we are concerned with the speed of solv-
ing the minimization problem in the second phase of the two-phase method,
i.e. minimizing the functional Fα. We report the time required for the whole
denoising process and the PSNR of the recovered image. In order to test the
speed of the algorithms more fairly, the experiments are repeated 10 times
and the average of the 10 timings is given in the tables. The stopping criteria
of the minimization phase is set

‖uk − uk−1‖
‖uk‖

≤ 10−4 and
|Fα(uk)−Fα(uk−1)|

Fα(uk)
≤ 10−4.

The potential function is ϕα(t) =
√
t2 + α with α = 100.

For the conjugate gradient type method, we choose Qk in (14) to be
the identity matrix. To choose µ in Assumption 1, we must have µ ≥
maxv∈Ω̄ ‖∇2Fα(v)‖. By (15) and the fact that ∇2Fα(v) is symmetric, we
have

‖∇2Fα(v)‖ ≤ ‖∇2Fα(v)‖∞ ≤ 16 sup
t
ϕ′′α(t), ∀v ∈ Ω̄.

Therefore, we choose

µ = 16 sup
t
ϕ′′α(t) =

16√
α
,

and hence δ in (14) is chosen as

δ =
√
α− 1
16

=
√

99
16

<
1
µ

=
√
α

16
=

5
8
.

In Table 1, we compare the five nonlinear CG type methods defined in (7)
– (11), which are denoted by FR, PR, HS, CD and DY respectively. We see
that PR is the most efficient one among the five methods. Therefore, we take
PR as a representative of the CG type methods in the following tests. Next,
we show the advantages of PR method over the 1D relaxation method applied
to the functional (1) as discussed in [4]. The results are given in Table 2. One
sees from Table 2 that the CG type method is faster than the relaxation
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method when the noise ratio is larger than 50% for both test images. When
the noise ratio is 90%, the CG method is about three times faster than the
relaxation-based method, i.e. about 60%–70% saving in CPU time. Moreover,
we note that the PSNR values attained by the minimizers of (1) and (4) are
almost exactly the same.

Table 1. Comparison of the conjugate gradient type methods for goldhill image

Time

Noise Ratio
FR PR HS CD DY

PSNR

30% 39.0 28.9 30.6 29.8 44.7 36.0
50% 58.4 43.4 44.8 44.3 67.4 32.7
70% 77.7 59.3 60.3 60.4 90.5 29.8
90% 184 152 153 153 217 26.1

Table 2. Comparison of the conjugate gradient type method with the relaxation-
based method

goldhill lena

Noise Relaxation PR Relaxation PR

Ratio Time PSNR Time PSNR Time PSNR Time PSNR

30% 35.5 36.0 28.9 36.0 35.7 36.4 49.2 36.5
50% 71.7 32.7 43.4 32.7 85.4 32.9 78.3 33.0
70% 130 29.8 59.3 29.8 133 29.7 81.1 29.8
90% 453 26.1 152 26.1 500 25.3 185 25.4

Finally, Figures 1 and 2 show the results obtained by (i) the adaptive
median filter (AMF), (ii) the two-phase schemes solved by 1D relaxation [4],
and (iii) the two-phase schemes solved by the conjugate gradient method.

6 Conclusion

In this paper, we give an efficient CG algorithm to minimize the regularization
functional in the two-phase impulse removal proposed in [4]. In its original
form, the regularization functional is not differentiable because of its non-
smooth data-fitting term. We modify it by removing the data-fitting term.
Then an efficient CG method, where the line search rule is replaced by a pre-
determined step length strategy, is applied to minimize the new functional.
Based on the results in [18], global convergence of the algorithm is established.
This variant of the two-phase method gives an output having the same visual
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(a) (b) (c)

(d) (e)

Fig. 1. Restoration results of different algorithms: (a) Original Goldhill image, (b)
Corrupted Goldhill image with 70% salt-and-pepper noise (6.9 dB), (c) Adaptive
median fiter (26.1 dB), (d) Two-phase method with relaxation (29.8 dB), and (e)
Two-phase method with conjugate gradient using (8) for βk (29.8 dB).

quality as the original method. With slight modification, the CG algorithm
can also be applied equally well to random-valued impulse noise (cf. [5]).

Regarding future research directions, we note that in the CG algorithm we
are allowed to select a sequence of {Qk} (see (14)) and they are chosen to be
the identity in our computations. It would be interesting to define {Qk} ac-
cording to the Hessian of the objective functional, or further, to perform some
preconditioning for the CG algorithm. Preconditioning is not straightforward
as the Hessian does not have any special structure. Also here the second order
derivative of ϕα(t) is only required in the convergence analysis and not in
the computation. One may hope to relax the twice continuously differentiable
assumption on ϕα(t) to only continuously differentiable. This may extend the
method to more potential functions such as ϕα(t) = |t|1+ε, ε > 0, which is
known to produce better restored images.
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