
May 11, 2007 10:29 International Journal of Computer Mathematics chan˙chen

International Journal of Computer Mathematics

Vol. 00, No. 05, May 2007, 1–18

Multilevel Algorithm for a Poisson Noise Removal Model with

Total-Variation Regularization

Raymond H. Chan∗ and Ke Chen‡
(Received 1 March 2007; In final form 11 May 2007)

Many commonly used models for the fundamental image processing task of noise removal can deal
with Gaussian white noise. However such Gaussian models are not effective to restore images with
Poisson noise, which is ubiquitous in certain applications. Recently Le-Chartrand-Asaki derived a
new data-fitting term in the variational model for Poisson noise. This paper proposes a multilevel
algorithm for efficiently solving this variational model. As expected of a multilevel method, it delivers
the same numerical solution many orders of magnitude faster than the standard single-level method
of coordinate descent time-marching. Supporting numerical experiments on 2D gray scale images are
presented.
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1 Introduction

Noise removal is a fundamental task in digital image processing. In many com-
monly used models [10], images with additive Gaussian white noise have been
considered and adequately modeled. In imaging applications where images are
generated by photon-counting devices such as computed tomography (CT),
Magnetic Resonance Imaging (MRI) and astronomical imaging, Poisson noise
rather than Gaussian noise is frequently present. Poisson noise is not additive,
and it is image pixel-intensity dependent, i.e. bright pixels are statistically
more corrupted than dark pixels.

Although the well-known variational ROF model [31] is effective for restoring
a noisy image z = z(x, y), (x, y) ∈ Ω, with Gaussian noise [5, 10,31,34] by

min
u

J1(u), J1(u) =
∫

Ω

[
ᾱ
√

u2
x + u2

y + (u− z)2/2
]
dxdy, (1)
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this model is less effective to restore u = u(x, y) when z contains Poisson noise
as shown in [20,21].

In the literature, there were a lot of previous work on modeling of and
algorithms for the Poisson noise removal; see [3,11,14–16,19,20,23,24] among
others. Here we shall consider the particular total variational model

min
u

J(u), J(u) =
∫

Ω

[
α
√

u2
x + u2

y + (u− z) log u
]
dxdy, (2)

proposed by Le-Chartrand-Asaki [21] recently, which is within the same model
framework of [1,23,27,28]. The total variational (TV) regularization used in (2)
using rotationally-invariant TV semi-norm is known to be better than the non-
rotationally-invariant semi-norm associated with Markov random field models

min
u

J2(u), J2(u) =
∫

Ω

[
α(|ux|+ |uy|) + (u− z) log u

]
dxdy, (3)

as done in [1, 23,27,28]; see [9, 10].
As is widely known, although fundamentally more accurate than linear fil-

tering methods, non-linear variational models are computationally expensive
to apply. Multigrid (or multilevel or multi-resolution) methods are well known
to exhibit optimal performance whenever they converge. Although their stan-
dard variants have convergence difficulties for the highly nonlinear and oscil-
latory coefficients in these models, we wish to overcome these difficulties for
the particular class of models under consideration.

Recently for solving the ROF Gaussian noise model [31], we have proposed
robust multilevel methods [8, 9]. For solving Markov random field models for
Poisson noise (3), multigrid methods with coarse level functionals using resid-
ual information via first order condition on the fine level (along similar lines
of [4, 26]) have been considered in [27, 28], where computational efficiency
has been achieved. However as remarked in [9], optimization based multigrid
methods using first order condition require assumption of the differentiability
of the underlying objective functional, hence limit the range of models that
can be solved. In fact, once differentiability is assumed, efficient multilevel
methods exist; see [12, 32] and the references therein. One also notes that to
solve Markov random field type models the graph-cut method [13, 30] may
offer a competitive multilevel solution. Such a method does not apply to the
TV regularization (2).

Our main attention in this paper is focused on developing a fast and
optimization-based multilevel algorithm that can solve the TV regularization
and does not involve differentiating the non-smooth functional. Thus we at-
tempt to generalize our recent work of [8, 9] from Gaussian noise removal
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to Poisson noise removal. We remark that one may develop a different varia-
tional model for Poisson noise removal using the Anscombe transformation [2]:

y = 2
√

x + 3
8 , where x is a Poisson distributed random variable and y is a an

approximate normal distributed random variable [22, 25]. However, the vari-
ance will be very large after the transformation.

The plan is to review our recently proposed multilevel method [8] for the
Gaussian noise removal for (1) in Section 2. Section 3 presents details of im-
plementation of a multilevel method for model (2). Numerical results are re-
ported in Section 4, where the advantages of (2) over (1) and the efficiency of
our multilevel method are highlighted.

2 Review of a multilevel method for optimization

We first review the multilevel method proposed in [8] for solving the Gaus-
sian noise removal problem. The method solves the discretized version of the
standard TV model (1):

min
u∈Rn×n

J1(u), (4)

where J1(u) = α
∑n−1

i,j=1

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)2 +

∑n
i,j=1

(ui,j−zi,j)2

2 ,
with α = α/h, h = 1/(n − 1) and z ∈ Rn×n. For simplicity, we shall assume
n = 2L.

Let the standard coarsening be used giving rise to L+1 levels k = 1 (finest),
2, . . . , L, L + 1 (coarsest). Denote the dimension of level k by τk × τk with
τk = n/2k−1. Consider the minimization of (4) by the coordinate descent
method on the finest level 1:





Given u(0) = (u(0)
i,j ) = (zi,j) with m = 0,

Solve u
(m)
i,j = argminui,j∈RJloc(ui,j) for i, j = 1, 2, . . . , n

Set u(m+1) = (u(m)
i,j ) and repeat the above step with m = m + 1

until a prescribed stopping step on m,

(5)

where Jloc(ui,j) = α
[√

(ui,j − u
(m)
i+1,j)2 + (ui,j − u

(m)
i+1,j)2 +√

(ui,j − u
(m)
i−1,j)2 + (u(m)

i−1,j − u
(m)
i−1,j+1)2+

√
(ui,j − u

(m)
i,j−1)2 + (u(m)

i,j−1 − u
(m)
i+1,j−1)2

]
+

1
2(ui,j − zi,j)2. For ui,j at the boundary, Neumann’s condition is used, see [8].
Note that each subproblem in (5) is only one dimensional.

What one may find surprising is that method (5) converges quickly but un-
fortunately to some non-stationary solution (i.e. stuck) near the true solution.
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It turns out that the presence of local constants in the solution u is responsible
for the stuck minimizer—this is related to the hemi-variateness of u, see [9,29].

To introduce the multilevel algorithm, it is of interest to rewrite (5) in an
equivalent form:





Given u(0) = (u(0)
i,j ) = (zi,j) with m = 0,

Solve ĉ = argminc∈RJloc(u
(m)
i,j + c), u

(m)
i,j = u

(m)
i,j + ĉ for i, j = 1, 2, . . . , n

Set u(m+1) = (u(m)
i,j ) and repeat the above step with m = m + 1

until a prescribed stopping step on m.

Here each subproblem can be interpreted as finding the best correction con-
stant at the current approximate u

(m)
i,j on level 1.

Likewise one may consider a 2× 2 block of pixels with pixel values denoted
by the current approximate ũ. We propose to look for the best correction
constant to update this block so that the underlying merit functional (relating
to all four pixels) achieves a local minimum. One sees that this idea operates
on level 2. If we repeat the idea with larger blocks, we arrive at levels 3 and 4
with respective 4× 4 and 8× 8 blocks.

If we write down the above idea in formulae, it may appear complicated but
the idea is simple. On level k, set b = 2k−1, m1 = (i− 1)b + 1, m2 = ib, `1 =
(j − 1)b + 1, `2 = jb. Let c = (ci,j). Then the (i, j)th computational block
(stencil) involving the single constant ci,j on level k can be depicted in terms
of pixels of level 1 as follows

...
... · · · ...

...
ũm1−1,`2+1 + ci−1,j+1 ũm1,`2+1 + ci,j+1 · · · ũm2,`2+1 + ci,j+1 ũm2+1,`2+1 + ci+1,j+1

ũm1−1,`2 + ci−1,j ũm1,`2 + ci,j · · · ũm2,`2 + ci,j ũm2+1,`2 + ci+1,j

· · · ... · · · ... · · ·
ũm1−1,`1 + ci−1,j ũm1,`1 + ci,j · · · ũm2,`1 + ci,j ũm2+1,`1 + ci+1,j

ũm1−1,`1−1 + ci−1,j−1 ũm1,`1−1 + ci,j−1 · · · ũm2,`1−1 + ci,j−1 ũm2+1,`1−1 + ci+1,j−1
...

... · · · ...
...

(6)
Clearly there is only one unknown constant ci,j and we shall obtain a one-
dimensional subproblem. After some algebraic manipulation [8, 9], we can
rewrite minci,j

J(ũ + Pkci,j) (with Pk an interpolation operator distributing
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ci,j to a b× b block on level k as illustrated) as minci,j
G(ci,j):

G(ci,j) = α

`2∑

`=`1

√
(ci,j − hm1−1,`)2 + v2

m1−1,` + α

m2−1∑
m=m1

√
(ci,j − vm,`2)2 + h2

m,`2
+

α

`2−1∑

`=`1

√
(ci,j − hm2,`)2 + v2

m2,`
+ α

m2∑
m=m1

√
(ci,j − vm,`1−1)2 + h2

m,`1−1 +

α
√

2
√

(ci,j − vm2,`2)2 + h
2
m2,`2 +

1
2

m2∑
m=m1

`2∑

`=`1

(
cm,` − z̃m,`

)2

= α

`2∑

`=`1

√
(ci,j − hm1−1,`)2 + v2

m1−1,` +

α

m2−1∑
m=m1

√
(ci,j − vm,`2)2 + h2

m,`2
+

α

`2−1∑

`=`1

√
(ci,j − hm2,`)2 + v2

m2,`
+ α

m2∑
m=m1

√
(ci,j − vm,`1−1)2 + h2

m,`1−1 +

α
√

2
√

(ci,j − vm2,`2)2 + h
2
m2,`2 +

b2

2
(ci,j − w̃i,j)2,

(7)
where we have used the notation:





z̃m,` = zm,` − ũm,`, w̃i,j = mean
(
z̃(m1 : m2, `1 : `2)

)
=

1
b2

m2∑
m=m1

`2∑

`=`1

z̃(m, `),

vm,` = ũm,`+1 − ũm,`, hm,` = ũm+1,` − ũm,`,

vm2,`2 = vm2,`2+hm2,`2
2 , hm2,`2 = vm2,`2−hm2,`2

2 .

(8)
The solution of the above local minimization defines ci,j .

The proposed piecewise constants based multilevel method for solving (4)
will repeatedly update (starting from ũ = z initially) ũ = ũ+Pkci,j , across all
levels k. Refer to [7–9].

3 The Poisson noise model and a multilevel method

A commonly-used technique to model Poisson noise is to use an expectation-
maximum (EM) algorithm [3, 11, 14–20, 23, 24, 33]. Let ui,j = u(xi, yj) be the
true image gray level at position (i, j). Then the observation noisy value zi,j
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of Poisson distribution with mean ui,j obeys the conditional probability

P (f |u) =
n∏

i,j=1

P (fi,j |ui,j) =
n∏

i,j=1

e−ui,ju
zi,j

i,j

zi,j !
.

Then an EM algorithm to solve maxu P (f |u) is equivalent to

min
u

n∑

i,j=1

zi,j !− log P (f |u) =
n∑

i,j=1

(
ui,j − zi,j log ui,j

)
.

The continuous formulation for this data-fitting step is the following

min
u

∫

Ω

(
u− z log u

)
dxdy,

for u = u(x, y). Direct reconstruction solution of this problem does not give
good quality images as with all inverse problems. Combined with the TV
regularization, the following was proposed in [21]

min
u

∫

Ω

[
α|∇u|+

(
u− z log u

)]
dxdy, (9)

where it is solved by applying a time-marching method to its Euler-Lagrange
equation:

∂u

∂t
= ∇ · ∇u

|∇u| +
1

αu
(z − u),

∂u

∂~n

∣∣∣∣
∂Ω

= 0. (10)

Our task is to solve (9), instead of (10), using a multilevel method. For this
purpose, we consider the solution of a discretized form of (9):

min
u∈Rn×n

J(u), (11)

where J(u) = α
∑n−1

i,j=1

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)2 +

∑n
i,j=1(ui,j −

zi,j log ui,j). As before, level k has τk × τk blocks with each block having
bk = 2k−1 pixels. We should remark that in all of the above equations for
the Poisson model we need to impose the constraint u = max(u, v0) for some
small quantity v0 (for simplicity assume v0 = 10−20).
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3.1 Coordinate descent method

For problem (11), the coordinate descent method defines the iterations:





Given u(0) = (u(0)
i,j ) = (zi,j) with m = 0,

Solve u
(m)
i,j = argminui,j∈RJ1

loc(ui,j) for i, j = 1, 2, . . . , n

Set u(m+1) = (u(m)
i,j ) and repeat the above step with m = m + 1

until a prescribed stopping step on m,

(12)

on the finest level 1, where ui,j > 0 and

J1
loc(ui,j) = α

[√
(ui,j − u

(m)
i+1,j)2 + (ui,j − u

(m)
i+1,j)2

+
√

(ui,j − u
(m)
i−1,j)2 + (u(m)

i−1,j − u
(m)
i−1,j+1)2

+
√

(ui,j − u
(m)
i,j−1)2 + (u(m)

i,j−1 − u
(m)
i+1,j−1)2

]
+ (ui,j − zi,j log ui,j).

As we know, the coordinate descent method alone does not lead to a correctly
converged solution [6, 9]. Next we consider a multilevel algorithm.

3.2 Coarse level problem and solver

Let ũ be a current approximate solution. On a general level k, with each block
of size b = 2k−1, assume b < n (otherwise the coarsest level is reached). Define
integers m1,m2, `1, `2 as in the previous section.

Consider the local minimization on the (i, j)th block of size b× b:

ci,j = argminci,j∈RJk
loc(ũi,j + Pkci,j) (13)

where Pk is as defined by (7) and

Jk
loc(um,`) = α

n∑

m,`=1

√
(um,` − um+1,`)2 + (um,` − um,`+1)2

︸ ︷︷ ︸
Term 1: to use formula (7) above

+
n∑

m,`=1

(
um,` − zm,` log um,`

)
.

︸ ︷︷ ︸
Term 2: to be simplified further below

The local problem (13) involves one dimensional minimization for ci,j—
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we hope to simplify this formulation. From (6), we know that for the total
variation term (Term 1), variable ci,j is only present along 4 sides of the (i, j)th

computational block as in (7) because for interior nodes, the ci,j cancels out.
For the data-fitting term (Term 2), all pixels of the (i, j) block will involve
ci,j :

n∑

m,`=1

[
(ũm,` + Pkci,j)− zm,` log(ũm,` + Pkci,j)

]

= b2ci,j −
m2∑

m=m1

`2∑

`=`1

zm,` log(ũm,` + ci,j)

︸ ︷︷ ︸
Part of Term 2 depending on ci,j

+
n∑

m,`=1

ũm,`.

The above are combined to give the following equivalent minimization
minci,j

H(ci,j) to (13):

H(ci,j) =

α

`2∑

`=`1

√
(ci,j − hm1−1,`)2 + v2

m1−1,` + α

m2−1∑
m=m1

√
(ci,j − vm,`2)2 + h2

m,`2
+

α

`2−1∑

`=`1

√
(ci,j − hm2,`)2 + v2

m2,`
+ α

m2∑
m=m1

√
(ci,j − vm,`1−1)2 + h2

m,`1−1 +

α
√

2
√

(ci,j − vm2,`2)2 + h
2
m2,`2 + b2ci,j −

m2∑
m=m1

`2∑

`=`1

zm,` log(ũm,` + ci,j),

(14)
where vm,`, hm,`, vm2,`2 , and hm2,`2 are defined in (8).

To further put (14) into a more compact form, define q1 = 2(`2 +m2−m1−
`1) + 3 = 4b− 1, q2 = (`2 − `1 + 1)(m2 −m1 + 1) = b2,

αm = α, m = 1, . . . , q1 − 1; αq1 = α
√

2.

Then pack all quantities vm1−1,`, hm,`2 , vm2,`, hm,`1−1, hm2,`2 and hm1−1,`,
vm,`2 , hm2,`, vm,`1−1, vm2,`2 in (14) respectively into two vectors a = (am)
and b = (bm). Finally pack elements zm,`, ũm,` in block (i, j) respectively into
vectors z = (zm), u = (um). We can represent (14) as

H(ci,j) =
q1∑

m=1

αm

√
a2

m + (ci,j − bm)2 + b2ci,j −
q2∑

m=1

zm log(um + ci,j) (15)
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Figure 1. Illustration of the effectiveness of the local smoothers: (17) in vertical dotted lines
(inaccurate) and (18) in vertical solid lines (accurate). Here the top plot shows the curve of

F (c) = J(ũ + ce2,19) and the bottom of F ′(c). The small scripts on the x-axis show the locations of
the iterates (the first line of 1), 2), 3) is for method (18) and the second line for method (17).

−2 −1 0 1 2 3 4 5 6 7

−38

−37

−36

Local functional Jlev=1
2,19

=J(u+c) = F(c)

0

−0.8
−0.6
−0.4
−0.2

0

Root of ∂ J/∂ c = F’(c)                                     

1) 2)3)
1) 2) 3)

To solve (15), notice that its first order condition is

∂H

∂ci,j
=

q1∑

m=1

(ci,j − bm)αm√
a2

m + (ci,j − bm)2
+ b2 −

q2∑

m=1

zm

(um + ci,j)
= 0. (16)

As the second sum in (16) is a high degree polynomial for ci,j , one may
naturally propose a simple Richardson type smoother

q1∑

m=1

(c(`+1)
i,j − bm)αm√

a2
m + (c(`)

i,j − bm)2
+ b2 −

q2∑

m=1

zm

(um + c
(`)
i,j )

= 0, ` = 0, 1, 2, . . . . (17)

This smoother may converge unfortunately to the non-stationary solution, as
shown in Figure 1 where the vertical dotted line shows the converged solution
(wrong) from using (17).

What we find useful is the following Richardson type smoother

q1∑

m=1

(c(`+1)
i,j − bm)αm√

a2
m + (c(`)

i,j − bm)2
+

q2∑

m=1

c
(`+1)
i,j + um − zm

(um + c
(`)
i,j )

= 0, ` = 0, 1, 2, . . . . (18)

In Figure 1, we mark the converged location in solid lines.
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Figure 2. Illustration of the non-unique solutions on the coarsest level when constraints are not
used. Here the bottom plot shows the curve of F (c) = J(ũ + c1) with 1 a vector of ones and the

top of F ′(c).

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

z =
 1 

 2 
 3

Coarsest Level Function F’(c) for u = [4  1  2]

c
initial

 = 1

−3.9 −3.8 −3.7 −3.6 −3.5
−6.6

−6.5

−6.4

−6.3

−6.2

−6.1

−6

−5.9

−1.8 −1.6 −1.4 −1.2

5.5

6

6.5

7

7.5

−−−−−−−−−−−−−−−−Original fitting F(c)=J(u+c)−−−−−−−−−−−−−−−

0 0.2 0.4 0.6
3.42

3.44

3.46

3.48

3.5

3.52

3.3 Coarsest level solver

On the coarsest level, we look for the best constant c that can be added to the
current solution ũ. Hence we solve

min
c∈R

αTV (ũ + c) +
∑

i,j

[ui,j + c− zi,j log(ũi,j + c)] s.t. ũi,j + c > 0

which, because of the Neumann boundary condition, is the same as

min
c∈R

∑

i,j

[ui,j + c− zi,j log(ũi,j + c)] = n2c−
∑

i,j

zi,j log(ũi,j+c) s.t. ũi,j+c > 0.

Different from the case of the Gaussian denoising [8], the solution to the above
problem from solving

∑

i,j

zi,j

ũi,j + c
− n2 = 0

is not unique due to multiple roots of the underlying polynomial in c, see
Figure 2. Fortunately the constraints ũi,j + c > 0 can be used to work out an
unique solution. In our implementation, we find such an unique solution from
using Newton solver with the particular choice c(0) = max(zi,j − ũi,j).
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3.4 Local patch constants

Whenever the TV semi-norm is used, the solution will allow local constants.
Such local constants lead to the hemi-variateness of the solution, which may
prevent local minimizations reaching the global minimizer [9,29]. Practically if
the coarse mesh does not match up with such constants (patches), the solution
near such patches may not be correct.

Following [9], we first detect such patches using the current solution u and
then design a special coarse mesh to update each particular constant on a
patch. The detection is done by comparing the neighboring consecutive pixels
(i`, j`) of pixel (i, j) i.e.

patch = {(i`, j`) | |ui`,j`
− ui,j | < ε} for some small ε (usually ε = 10−3).

Assume, at pixel (i, j), the detected set is

S = {(m, `) | m1 ≤ m ≤ m2, `1 ≤ ` ≤ `2}.

Then the local minimization on the S block of size b1 × b2 proceeds similarly
to (13)

ci,j = argminci,j∈RJs
loc(ũi,j + Psci,j) (19)

where Ps on set S (of size b1 × b2) is defined similarly to Pk on a set of size
b× b before. That is, all formulations for updating u on a regular block b× b
are applicable to this new block with only minor changes, e.g. b2 will become
b1b2.

3.5 Multilevel algorithm

The overall multilevel algorithm proceeds as follows:

Algorithm 3.1 Given an image z containing Poisson noise, set up L + 1 levels
and assume ũ = z is an initial guess:

(i) Let u0 = ũ.
(ii) Smooth the approximation on the finest level 1, i.e. solve (12) for i, j =

1, 2, . . . , n.
(iii) On coarse levels k = 2, 3, . . . , L + 1:

— compute z̃ = z − ũ
— Compute the minimizer c of (14)
— Add the correction, ũ = ũ + Pkc.
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(iv) On level k = 1, find each patch set S and solve for c (19).
Add each correction ũ = ũ + Psc as with Step 3.

(v) If ‖ũ− u0‖2 is small enough, exit with u = ũ or return to Step 1.

Complexity. For z ∈ Rn×n, let N = n2, n = 2Lm , L ≤ Lm. To estimate the
complexity of Algorithm 3.1, we need to estimate the number of terms in (18)
using bk = 2k−1, τk = N/b2

k. Firstly the coefficients am, bm in functional H(ci,j)
on level k require 4bk flops to compute and secondly the flop count for s steps
of the Richardson smoother is 6sq1 + 4q2 = 6s(4bk − 1) + 4sb2

k. Hence we can
estimate the complexity of one cycle of Algorithm 3.1 as follows

L+1∑

k=1

(
4bkτk + 6s(4bk − 1)τk + 4sb2

kτk

) ≈
L+1∑

k=1

(
4N

2k−1
+

24sN

2k−1
+ 4sN

)

≈ 8N + 48sN + 4sN log N ≈ O(N log(N)),

which is expected of a multilevel method.
Convergence of the algorithm can be established using the classical theory

of local minimizations (as in [9]), if the local constraint u > 0 is satisfied on
all fine levels. It remains to be done for the general case.

4 Numerical experiments

In this section we present some numerical experiments of the proposed multi-
level (ML) Algorithm 3.1 to demonstrate the followings:

• our new results restore images better than the standard ROF model [31].
• practical performance of our ML algorithm for a range of problems.

Restoration performance is indicated by the mean absolute error (MAE)

MAE = MAE(r, u) =
1

mn

m∑

i=1

n∑

j=1

|ri,j − ui,j |

where ri,j and ui,j denote the pixel values of the restored image and the original
image respectively, with u, r ∈ Rm×n. Here we assume zi,j , ri,j , ui,j ∈ [0, 255].

Firstly we consider the Poisson denoising problem as shown in the left plot
of Figure 3 (as considered in [21]). With a fixed parameter αPoisson = 1/4
(see (11)), we vary the parameter α for the ROF model in (4) and compare
the restoration results of our adopted model and those of the ROF [31] for
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Figure 3. A Poisson noise problem (z on the left and the true image uexact on the right).
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Gaussian noise. The results are displayed in Figures 4–5, where one observes
that, although the ROF results are comparable to the Poisson result in terms
of MAE values,

i) if α is small, the ROF model respects low gray values more and leaves too
much noise near large gray level values (see zoomed-in locations on the
right of Figure 4 and also the top of the middle plot);

ii) if α is large, the ROF model tends to lose features at low gray values but
recovers well near large gray level values (see zoomed-in locations on the
right of Figure 5).

In contrast, the Poisson model treats noise more proportionally with gray level
values. This was also observed in [21].

Next we consider four more real-life examples with Poisson noise (see the
left plots of Figures 6 and 7). We apply our ML algorithm 3.1 with 4 cycles
and display the MAE values of the restored images in Table 1. Clearly ML
restored results (using only 4 multilevel cycles) are of good quality.

5 Conclusions

We have generalized an optimization-based multilevel method previously pro-
posed for the standard Gaussian denoising model to solve a Poisson denoising
model. The main complication with the non-uniqueness of the coarsest level
optimization problem is resolved by making use of the constraints. Our multi-
level method has a nearly optimal complexity O(N log N) and is suitable for
quickly processing large images containing Poisson noise.
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Figure 4. Performance of ROF [31] with a small α = 12.5 for Poisson noise data – data with large
noise compromised. Here and also in Figure 5, MAE(r, z) = 4.96.
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Figure 5. Performance of ROF [31] with a large α = 250 for Poisson noise data – data with small
noise compromised.
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Table 1. Restoration errors of ML with 4 cycles for different problems in varying sizes

Problem Size n MAE(r, uML) Problem Size n MAE(r, uML)
1 64 7.05 2 64 4.98

128 5.62 128 3.60
256 5.41 256 2.93
512 3.93 512 2.46
1024 3.38 1024 2.08

3 64 14.2 4 64 9.98
128 9.01 128 6.00
256 4.76 256 3.03
512 3.53 512 3.70
1024 3.71 1024 2.25
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MAE(r, z) = 8.16, MAE(r, u) = 3.71 and for Problem 4, MAE(r, z) = 8.37, MAE(r, u) = 2.25.
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