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A MULTILEVEL ALGORITHM FOR SIMULTANEOUSLY
DENOISING AND DEBLURRING IMAGES∗

RAYMOND H. CHAN† AND KE CHEN‡

Abstract. In this paper, we develop a fast multilevel algorithm for simultaneously denoising
and deblurring images under the total variation regularization. Although much effort has been
devoted to developing fast algorithms for the numerical solution and the denoising problem was
satisfactorily solved, fast algorithms for the combined denoising and deblurring model remain to be
a challenge. Recently several successful studies of approximating this model and subsequently finding
fast algorithms were conducted which have partially solved this problem. The aim of this paper is to
generalize a fast multilevel denoising method to solving the minimization model for simultaneously
denoising and deblurring. Our new idea is to overcome the complexity issue by a detailed study of
the structured matrices that are associated with the blurring operator. A fast algorithm can then be
obtained for directly solving the variational model. Supporting numerical experiments on gray scale
images are presented.
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1. Introduction. Image denoising and deblurring often coexist in image pro-
cessing problems [11, 29, 57, 65]. In the continuous formulation, denote by u = u(x, y)
the true image and z = z(x, y) the observed image, both defined in the bounded and

rectangular domain Ω = [0, 1] × [0, 1] ⊂ R
2. In practice, only z ∈ R

n2

is available
in a discrete form [3, 38, 58]. The observed image z has been contaminated in the
data collection stage, such as in acquisition and quantization. The purpose of image
restoration is to recover u, as much as we can, using the degradation model

Ku− z = η,(1)

where η is an unknown Gaussian white noise and K is a known linear degradation
operator. For deblurring problems K is a convolution operator and for denoising
problems K = I. There exist many efficient solvers for the latter problem of denoising
[14, 25, 23, 33, 30, 36, 34, 37, 59] and for the former problem of (pure) deblurring
with η = 0 [16, 35, 12, 17]. It is the general case where both noise and blur coexist
that remains challenging to solve efficiently. The purpose of this paper is to address
this general case.

As image restoration is an inverse problem that may not have a unique solution,
some regularity condition has to be imposed on the solution space in order to turn the
underlying ill-posed problem to a well-posed one [65]. We shall use the well-known
total variation (TV) regularization to ensure that sharp features of an image are

∗Received by the editors November 19, 2008; accepted for publication (in revised form) January 20,
2010; published electronically March 31, 2010.

http://www.siam.org/journals/sisc/32-2/74141.html
†Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR,

China (rchan@math.cuhk.edu.hk). This research was supported in part by HKRGC grant 400708
and CUHK DAG grant 2060257.

‡Corresponding author. Centre for Mathematical Imaging Techniques and Department of Math-
ematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL, United Kingdom
(k.chen@liverpool.ac.uk).

1043



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1044 RAYMOND H. CHAN AND KE CHEN

preserved [57]. However, we note that there are many other regularization functionals
(some beyond the variational framework) that might be used; see [2, 48, 26, 9, 54, 49,
10] and the references therein.

Below we briefly review the common methodology to set the context for our
algorithm in the following sections. Following early work [27], we choose the Tikhonov
direct regularization technique to solve the inverse problem (1),

min
u

J(u), J(u) = αR(u) +
1

2
‖Ku− z‖22,(2)

where the regularization functional R(u) is chosen as the TV seminorm [57, 27]

R(u) = ‖u‖TV =

∫
Ω

|∇u|dxdy =

∫
Ω

√
u2
x + u2

ydxdy.(3)

Here the parameter α represents a trade-off between the quality of the solution and the
fit to the observed data. Thus the overall image restoration problem is the following:

min
u

α ‖u‖TV +
1

2
‖Ku− z‖22 .(4)

The solution to problem (4) is given by the Euler–Lagrange equation

α∇ ·
( ∇u

|∇u|
)
−K∗Ku = −K∗z,(5)

where K∗ is the adjoint operator of K. Notice that the nonlinear coefficient may have
a zero denominator so the equation is not defined at such points (corresponding to
flat regions of the solution). A commonly adopted idea to deal with |∇u| = 0 was
to introduce (yet) another parameter β to (4) and (5) so the new Euler–Lagrange
equation becomes

α∇ ·
(

∇u√|∇u|2 + β

)
−K∗Ku = −K∗z.(6)

It corresponds to minimizing, instead of (4),

min
u

Jβ(u), Jβ(u) =

∫
Ω

[
α
√
u2
x + u2

y + β +
1

2
(Ku− z)2

]
dxdy,(7)

and in theory u = uβ(x, y) differs from u in (5). Observe that when β = 0, (6) reduces
to (5); moreover uβ → u as β → 0 as shown in [1].

The existing solution methods for solving (6) or problem (4) differ in how to deal
with nonlinearities, and they fall into these categories:

• Fixed point iteration [1, 63, 66, 67, 64, 65]: Solve a lagged diffusion problem
until uk+1 − uk is small:

α∇ ·
(

∇uk+1√|∇uk|2 + β

)
−K∗Kuk+1 = −K∗z.(8)

There exists a large literature on this topic, mainly due to wide interest in de-
veloping fast iterative solvers for the above linear equations (once discretized).
When K is a convolution operator, the challenge is to solve the resulting lin-
ear system without forming the discretized matrix of K∗K (mimicking the
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MULTILEVEL ALGORITHM FOR DENOISING AND DEBLURRING 1045

capability of the fast multipole method) [66, 67, 17, 18, 16, 49]. Further
improvements on robustness of these solvers and on preconditioning are still
needed.

• Explicit time marching scheme [57, 50]: The original idea in [57] was refined
in [50] as solving the following parabolic PDE until a steady state has been
reached:

ut = |∇u|
[
α∇ ·

(
∇u√|∇u|2 + β

)
−K∗Ku+K∗z

]
.(9)

As remarked in [55], for linear problems, this type of idea represents a kind
of relaxation scheme. The drawback is that the artificial time step Δt must
be small due to stability requirement.

• Primal-dual method [27, 28, 7]: As discussed in [7], the Newton method
for (6) leads to very slow or no convergence because z is often not a suf-
ficiently close initial guess for u. Introducing the dual variable (vector)
ω = ∇u/

√|∇u|2 + β appears to have made the combined system{
α∇ · ω −K∗Ku = −K∗z,

ω
√|∇u|2 + β −∇u = 0,

in two variables (u, ω) more amenable to Newton iterations as the new system
is nearly “linear” in the two variables (after elimination of w the equation in
u is less linear). Note that ω is constrained in each iteration step so the
overall algorithm needs some careful implementation. However, up to now,
an efficient multilevel implementation of this method remains to be developed.
The same is true for an alternative primal-dual formulation [43].

• Alternating minimization method [68, 44]: As it appears difficult to propose
more efficient methods for solving (6), one recent idea was to separate denois-
ing from deblurring in an iterative way. To this end, the original functional
(2) is replaced (approximated) by

min
u,f

JA(u, f), JA(u, f) = αR(u) + β‖u− f‖22 +
1

2
‖Kf − z‖22,(10)

which is no easier to solve if coupling is implemented. Instead, the idea is to
solve alternatively the following (given some initial f̃):⎧⎪⎨⎪⎩

ũ = argminuJ
A
(
u, f̃

)
= αR(u) + β‖u− f̃‖22,

f̃ = argminfJ
A (ũ, f) = β‖f − ũ‖22 +

1

2
‖Kf − z‖22,

(11)

which is indeed calling two separate (efficient and existing) solvers, respec-
tively, for denoising and deblurring.

In addition, for the denoising case, there exist the powerful dual formulations [14, 42]
that replace the primal variable u by its dual variable p = (p1, p2). The work of [15, 46,
56] modifies the TV formulation in other ways so that the new equations become more
amenable to numerical implementation. For the dual formulation, efficient algorithms
can be developed [25].
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1046 RAYMOND H. CHAN AND KE CHEN

As far as fast nonlinear multilevel methods for (4) and (6) are concerned, two
approaches tested for denoising are possible candidates to be generalized to the de-
blurring case:

• Full approximation scheme (FAS) based methods. The original FAS method
was proposed by Brandt in the 1970s and was generalized to optimization prob-
lems byTa’asan [60]. Further studies of the approach can be found in [51, 8, 39].

• Non-FAS basedmethods.While the FASmethods design coarse level optimiza-
tions using the residual information of the first order conditions of a fine level,
non-FAS methods try to derive coarse level optimizations by using coarse sub-
spaces in coordinate descent fashion. The earlier references include [6, 62, 61,
47, 53]. Application to the denoising problem was considered in [13, 23].

In what follows we shall follow the latter approach and attempt to solve the original
primal and optimization formulation (4) directly by a (non-FAS based) multilevel
algorithm and thus generalize our previous denoising algorithm [22] with K = I
to the combined case of denoising and deblurring. The former approach for this
combined case is not yet considered in the literature, but various potential difficulties
were discussed in [16].

The plan is to review our recently proposed multilevel method for the Gaussian
noise removal [22] in section 2. The section also shows that its direct generalization to
the combined case of denoising and deblurring suffers from loss of multilevel efficiency.
Then section 3 presents a new multilevel method that utilizes the fast multipole ideas
to overcome the complexity issue and hence recover the multilevel efficiency. The step
of implementing the patch level minimization is particularly challenging to work out.
Numerical experiments are reported in section 4, where we shall compare the new
method with the primal-dual method [27, 28, 7].

2. Review of a multilevel method for optimization. We now briefly review
the multilevel optimization method proposed in [22] for removing Gaussian noise,
applied in [19] to Poisson noise removal and in [20] to impulse noise removal. One
nice advantage about the method is that it can be applied to nonsmooth functionals
as it does not require their first order conditions (or global gradient).

For a minimization problem, the important issue in designing a multilevel method
is how to make use of an approximate solution ũ to improve it further, or how to mea-
sure the “distance” from the true minimizer so that this information can be passed
onto the coarse levels somehow. (We note that for differentiable functions, first or-
der conditions can be used to define a residual of ũ, and then it is passed onto the
modification of a coarse level minimization functional; see [60, 8, 51].) That is to
say, here, there is no obvious way to define a residual correction functional (as done
for an operator equation [32]). Here we shall use the coordinate descent method
[6, 41, 53, 62, 45, 13, 24] as a smoothing method to find a solution near the true
minimizer (not to find the minimizer itself).

In this paper, to simplify the notation, we assume that the image z is given in
a vector form z ∈ R

n2

with its entries zi,j ordered lexicographically. Similarly we
shall use u to denote the reconstructed image in a vector from ordering its entries ui,j

lexicographically. Also we shall use z̃, ũ to mean, respectively, the known vectors of
u, z at a point of discussion. However, for continuous formulations, we reuse z, u to
mean, respectively, the given image function and the reconstruction function.

Assume n = 2L and let the standard coarsening be used, giving rise to L+1 levels
k = 1 (finest), 2, . . . , L, L + 1 (coarsest). Denote the dimension of level k by τk × τk
with τk = n/2k−1.
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We illustrate the method in solving the standard TV denoising model [57]:

min
u

J(u), J(u) =

∫
Ω

(
α
√
u2
x + u2

y +
1

2
(u− z)2

)
,

which is discretized to give rise to the optimization problem,

min
u∈Rn2

J(u),(12)

J(u) = α

n−1∑
i=1

n−1∑
j=1

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)2 +

1

2

n∑
i=1

n∑
j=1

(ui,j − zi,j)
2,

with α = α/h and h = 1/(n− 1).
As a prelude to multilevel methods, consider the minimization of (12) by the

coordinate descent method on the finest level 1:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Given u(0) = (u
(0)
i,j ) = (zi,j) with l = 0,

Solve u
(l)
i,j = argminui,j∈R

J loc(ui,j) for i, j = 1, 2, . . . , n,

Set u(l+1) = (u
(l)
i,j) and repeat the above step with l = l + 1

until a prescribed stopping step on l,

(13)

where

J loc(ui,j) = α

[√(
ui,j − u

(l)
i+1,j

)2
+
(
ui,j − u

(l)
i,j+1

)2
+

√(
ui,j − u

(l)
i−1,j

)2
+
(
u
(l)
i−1,j − u

(l)
i−1,j+1

)2
+

√(
ui,j − u

(l)
i,j−1

)2
+
(
u
(l)
i,j−1 − u

(l)
i+1,j−1

)2 ]
+ 1

2 (ui,j − zi,j)
2.

(14)

Note that each subproblem in (13) is only one dimensional.
To introduce the multilevel algorithm, we rewrite (13) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Given u(0) = (u
(0)
i,j ) = (zi,j) with l = 0,

Solve ĉ = argminc∈R
J loc(u

(l)
i,j + c), set u

(l)
i,j = u

(l)
i,j + ĉ,

Set u(l+1) = (u
(l)
i,j) and repeat the above step with

l = l + 1 until a prescribed stopping step on l,

(15)

where i, j = 1, 2, . . . , n. Here each subproblem can be interpreted as finding the best

correction constant ĉ at the current approximate u
(l)
i,j on level 1. Likewise one may

consider a 2× 2 block of pixels with pixel values denoted by the current approximate
ũ. Our multilevel method for k = 2 is to look for the best correction constant to
update this block so that the underlying merit functional (relating to all four pixels)
achieves a local minimum. One sees that this idea operates on level 2. If we repeat
the idea with larger blocks, we arrive at levels 3 and 4 with respective 4× 4 and 8× 8
blocks.
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1048 RAYMOND H. CHAN AND KE CHEN

If we write down the above idea in formulae, it may appear complicated but
the idea is simple. On level k, set b = 2k−1, k1 = (i − 1)b + 1, k2 = ib, �1 =
(j − 1)b + 1, �2 = jb. Then the (i, j)th computational block (stencil) involving
the single constant ci,j on level k can be depicted in terms of pixels of level 1 as
follows:

(16)

...
... · · ·

...
...

ũk1−1,�2+1 + ci−1,j+1 ũk1,�2+1 + ci,j+1 · · · ũk2,�2+1 + ci,j+1 ũk2+1,�2+1 + ci+1,j+1

ũk1−1,�2 + ci−1,j ũk1,�2 + ci,j · · · ũk2,�2 + ci,j ũk2+1,�2 + ci+1,j

· · ·
... · · ·

... · · ·
ũk1−1,�1 + ci−1,j ũk1,�1 + ci,j · · · ũk2,�1 + ci,j ũk2+1,�1 + ci+1,j

ũk1−1,�1−1 + ci−1,j−1 ũk1,�1−1 + ci,j−1 · · · ũk2,�1−1 + ci,j−1 ũk2+1,�1−1 + ci+1,j−1

...
... · · ·

...
...

.

Clearly there is only one unknown constant ci,j in each block, and we shall obtain
a one-dimensional subproblem. After some algebraic manipulation [22, 23], we find
that the local minimization problem minci,j J(ũ + Pkci,j) (with Pk an interpolation
operator distributing ci,j to a block on level k (which has b × b pixels on level 1) as
illustrated above) is equivalent to a one-dimensional problem.

For later use, consider the general case of a piecewise constant ci,j update on a
certain block of b1 × b2 pixels, occupying the index range of [k1, k2]× [�1, �2] on level
1. The one-dimensional (1D) problem is minci,j G(ci,j), where

G(ci,j) = αT (ci,j) +
b1b2
2

(ci,j − q̃i,j)
2,(17)

T (ci,j) =

�2∑
�=�1

√
(ci,j − hk1−1,�)2 + v2k1−1,� +

k2−1∑
m=k1

√
(ci,j − vm,�2)

2 + h2
m,�2

+

�2−1∑
�=�1

√
(ci,j − hk2,�)

2 + v2k2,�
+

k2∑
m=k1

√
(ci,j − vm,�1−1)2 + v2m,�1−1

+
√
2

√
(ci,j − vk2,�2)

2 + h
2

k2,�2 ,

z̃m,� = zm,� − ũm,�, and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q̃i,j = mean
(
z̃(k1 : k2, �1 : �2)

)
=

k2∑
m=k1

�2∑
�=�1

z̃(m, �)

b1b2
,

ṽm,� = ũm,�+1 − ũk,�, vk2,�2 =
vk2,�2 + hk2,�2

2
,

h̃m,� = ũm+1,� − ũm,�, hk2,�2 =
vk2,�2 − hk2,�2

2
.

(18)

The solution of the above 1D minimization problem, solved by a Richardson iteration
[23], defines the updated solution of u = ũ + Pkci,j . Then we obtain a multilevel
method if we cycle through all levels and all blocks on each level.
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We now briefly comment on the optimization multilevel method. First, the con-
vergence is generally not guaranteed, if the functional J is nonsmooth. However, in
[22], we found that the wrongly converged solution is only incorrect near flat patches
of the solution. Such patches are related to the hemi-variateness of the unknown so-
lution [53]. The idea of detecting such flat patches during iteration and incorporating
new local minimizations based on the patches was suggested in [22]. Essentially we
implement a new coarse level. Second, how would one solve the one-dimensional min-
imization problem? Our experience suggests either a fixed point based Richardson
iteration or the Newton method [5]. On the coarsest level, the TV term is unchanged
by adding c, so the problem has an exact solution. To avoid the gradient becoming
zero on other levels, we need a regularizing parameter δ [22] which does not influence
the final convergence as long as it is small (e.g., 10−20). Here the solution of each
local minimization problem is only needed to be approximate as with smoothing steps
of a multigrid method for an operator equation. One might question the advantage
of solving (12) this way and suggest to solve a regularized version of (12) by adding
the parameter δ at the very beginning. While this is feasible, the newly regularized
problem is theoretically smooth and the resulting multilevel method will converge.
However, the convergence will be slow if δ is small, and in general the method is
sensitive to changes in δ. Moreover, our patch detection idea will not work as local
patches are suppressed. Hence we do not propose to regularize (12).

Overall the revised multilevel method [22] for solving (12)—the denoising
problem—is the following algorithm.

Algorithm 1. Given z and an initial guess ũ = z, with L+ 1 levels,
1. Iteration starts with uold = ũ (ũ contains the initial guess before the first iteration

and the updated solution at all later iterations).
2. Smooth for ν iterations the approximation on the finest level 1, i.e., solve (13) for

i, j = 1, 2, . . . , n.
3. Iterate for ν times on each coarse level, i.e.,

for k = 2, 3, . . . , L+ 1:
• compute z̃ = z − ũ, q̃i,j, ṽm,�, and h̃m,� via (18),
• compute the minimizer c of (17) for each block on level k if k ≤ L; on the
coarsest level k = L+1, the correction constant (of the single block) is simply
c = mean(q̃) = mean(z − ũ),

• add the correction, ũ = ũ + Pkc, where Pk is the interpolation operator
distributing ci,j to the corresponding b × b block on level k as illustrated
in (16).

end
4. On level k = 1, find the maximum possible patch at each position (i, j) for some

small ε,

patch = {(i�, j�) : |ui�,j� − ui,j | < ε} ,

which is assumed to be a generic block of b1× b2 pixels with index [k1, k2]× [�1, �2].
for each of such blocks,

• compute the minimizer c of (17) for the block;
• add the constant correction c to ũ as with step 3.

end
5. If ‖ũ − uold‖2 is small enough, exit with u = ũ or return to step 1 and continue

iterations.
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We note that whenever the TV seminorm is used (resulting in a nonsmooth
J), the solution will allow local constants. Such local constants lead to the hemi-
variateness of the solution, which may prevent local minimizations reaching the
global minimizer [53]. Step 4 here is to overcome this; see [23]. Finally, we re-
mark that the above method can also be adapted for solving the Poisson denoising
model [19].

Here Algorithm 1 has a complexity of O(n2 logn) because each level costs O(n2)
and there are up to O(log n) levels. Our aim is to achieve the same complexity of
O(n2 logn) for the new problem (4)—the problem with deblurring.

Complexity issues associated with a generalized multilevel method. We
now consider how to generalize the above multilevel algorithm to the combined de-
noising and deblurring case. In fact, it suffices to show that even implementing the
finest level minimization alone cannot be made efficient because the complexity is
already about O(n4), while the expected is only O(n2 logn). We remark that if the
TV seminorm is replaced by the L2 norm, efficient multigrid methods can be devel-
oped easily; see [16] and the references therein. The TV seminorm for deblurring
remained a hard problem to solve efficiently up to now. The most difficult aspect is
a lack of suitable smoothers as all local smoothers turn out to be global in terms of
complexity.

Below we show the issues to be addressed when Algorithm 1 is directly applied
to (4). Recall that the standard TV model [57] in the continuous form is

min
u

J(u), J(u) =

∫
Ω

(
α
√
u2
x + u2

y +
1

2
(Ku− z)2

)
dxdy.

The above TV problem can be discretized to give rise to the optimization problem,

min
u∈Rn2

J(u),(19)

J(u) = α

n−1∑
i=1

n−1∑
j=1

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)2

+
1

2

n∑
i=1

n∑
j=1

(
n∑

�=1

n∑
m=1

Ki,j;�,mu�,m − zi,j

)2

,

with α = α/h and h = 1/(n−1). Here the structure of the dense matrixK = (Ki,j;�,m)
of size n2 × n2 depends on the assumption of the blurring operator in (1) and the
boundary condition for u; see [65, 29].

Below we shall assume that K is a block circulant matrix with circulant blocks
(BCCB). This is the case if we adopt the periodic boundary condition [52].

Now solve (19) by the coordinate descent method on the finest level 1:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Given u(0) = (u
(0)
i,j ) = (zi,j) with l = 0,

Solve u
(l)
i,j = argminui,j∈R

J loc(ui,j) for i, j = 1, 2, . . . , n,

Set u(l+1) = (u
(l)
i,j) and repeat the above step with l = l + 1

until a prescribed stopping step on l,

(20)
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where

J loc(ui,j) =
1

2
‖Ku− z‖2 + α

[√(
ui,j − u

(l)
i+1,j

)2
+
(
ui,j − u

(l)
i,j+1

)2
+

√(
ui,j − u

(l)
i−1,j

)2
+
(
u
(l)
i−1,j − u

(l)
i−1,j+1

)2
+

√(
ui,j − u

(l)
i,j−1

)2
+
(
u
(l)
i,j−1 − u

(l)
i+1,j−1

)2 ]
.(21)

Although each subproblem in (20) is only one dimensional, we see that it has an
O(n2) complexity because the fitting term involves vectors of length n2 and, in partic-

ular, Ku = ui,jwt + w̃t, where t = (j − 1)n+ i, wt ∈ R
n2

is the tth column of K, and
w̃t is a vector not involving ui,j (i.e., a weighted sum of all columns of K except t).

The same complexity problem persists on level k, where minci,j J(ũ+Pkci,j) leads
to minimization of the local subproblem

J loc(ci,j) = αT (ci,j) +
1

2
‖ci,jwt +Kũ− z‖2 = αT (ci,j) +

1

2
‖ci,jwt − z̃‖2,(22)

where z̃ = z − Kũ is known, T (ci,j) is as defined in (17), and the vector wt ∈ R
n2

denotes the summation of all columns of K corresponding to the entries inside the
(i, j) block on level k.

The complexity issue prevents us from achieving the expected multilevel effi-
ciency of O(n2 logn), because the accumulated complexity of solving all subproblems
amounts to O(n4 logn). This is one of the main reasons why no one has implemented
such a method. Below we shall address the question of how to solve subproblem (22)
without explicitly forming or storing the long vectors wt. It turns out that this is
possible, and consequently a working multilevel method is obtained.

3. An efficient multilevel method. As we know, if each subproblem must
be solved in isolation, the overall algorithm does not have the expected multilevel
efficiency. However, we have found that all the time-consuming parts in solving these
subproblems lie in vector products related to the blurring operator and such products
can be arranged in a nested way, in the spirit of a fast multipole method [40]. The
resulting algorithm can achieve the same efficiency as for the denoising case.

The starting point of our idea lies in considering how to minimize the subproblem
(22), not individually but somehow collectively in terms of precomputation steps.
Note that its first order condition takes the form

αT ′(ci,j) + wT
t wtci,j = wT

t z̃.(23)

We anticipate that once all such quantities wT
t wt and wT

t z̃ (for all wt recursively as one
deals with partial sums in the fast multipole method [40]) are computed and stored
first before each multilevel cycle, the local solvers will not be expensive to proceed.
Below we investigate such quantities.

3.1. Fast construction of partial columns of the blurring matrix K.
We first address the problem of how to compute wT

t wt efficiently, when wt denotes
the sum of columns of K corresponding to the block on level k. It turns out that
these vector quantities wt are structured for any level. Typically the number of such
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columns to be summed on level k is 4k−1, with each column of size n2. This is because
the number of entries in any block on level k is 4k−1.

To explain the notation and to illustrate the idea of wt being structured, consider
n = 4, i.e., a small image with 4 × 4 pixels. Denote matrix K and its w1 on level 2,
respectively, as follows:

(24)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j k l m n o p

h a b c d e f g p i j k l m n o

g h a b c d e f o p i j k l m n

f g h a b c d e n o p i j k l m

e f g h a b c d m n o p i j k l

d e f g h a b c l m n o p i j k

c d e f g h a b k l m n o p i j

b c d e f g h a j k l m n o p i

i j k l m n o p a b c d e f g h

p i j k l m n o h a b c d e f g

o p i j k l m n g h a b c d e f

n o p i j k l m f g h a b c d e

m n o p i j k l e f g h a b c d

l m n o p i j k d e f g h a b c

k l m n o p i j c d e f g h a b

j k l m n o p i b c d e f g h a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a+ b+ e+ f

h+ a+ d+ e

g + h+ c+ d

f + g + b+ c

e+ f + a + b

d+ e+ h+ a

c+ d+ g + h

b+ c+ f + g

i+ j +m+ n

p+ i+ l+m

o+ p+ k + l

n+ o+ j + k

m+ n+ i+ j

l+m+ p+ i

k + l+ o+ p

j + k + n+ o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

First observe that K is block circulant in blocks of sizes 1 × 1, 2 × 2, 4 × 4, and
8×8. Since a circulant matrix can be represented by its root matrix which consists of
elements from its column 1 (see [65, 32, 21]), the root matrix on level 1 and on level
2 for the above K may be, respectively, represented by

T1 =

⎡⎢⎢⎣
a e i m
h d p l
g c o k
f b n j

⎤⎥⎥⎦ , T2 = reshape(w1, 4, 4),

where “reshape” denotes the operation of reshaping the vector w1 into a 4× 4 (root)
matrix. Second, we claim that the new matrix made from the partial sums of columns
of K has also a block circulant structure. Consider the first subproblem (from block
(1, 1)) on level 2. The local update required is

u = ũ+ c1,1[1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ≡ ũ+ c1,1e1,1,

and from (22) the local functional is

J loc(c1,1) = αT (c1,1) +
1

2
‖c1,1wt +Kũ− z‖2 = αT (c1,1) +

1

2
‖c1,1wt − z̃‖2,

with wt = Ke1,1 shown in (24) as a sum of the four columns of K (in particular,
columns 1, 2, 5, 6) and t = (j − 1)n + 1 = 1. Hence the new matrix [w1, w2, w3, w4]
of all partial sums of columns of K on level 2 is determined completely by its first
column.

The above illustration suggests that the matrix of all wt has a circulant structure,
so storing this matrix amounts to keeping a copy of its root matrix (which is formed
by reshaping its first column).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTILEVEL ALGORITHM FOR DENOISING AND DEBLURRING 1053

Thus on each level, we only need to form the column 1 of this matrix of partial
sums. Also we may form such matrices recursively starting from the finest level.

Algorithm 2 (computation of partial sums of K). Let T1 ∈ R
n×n be the root

matrix of the BCCB matrix K on level 1 (which is reshaped from column 1 of K).
Below for k ≥ 2, we shall form the root matrix Tk ∈ R

n×n that contains partial sums
of K’s 4k−1 columns and Wk = ‖Tk‖2F .
for k = 2, . . . , L+ 1

• Set b = 2k−2 (the width of blocks on level k − 1).
• Assign Y = Tk−1.

1. Inter-block summation
– Set the first block X1 = Y (:, 1 : b) + Y (:, n− b+ 1 : n)
– for � = b+ 1, 2b+ 1, 3b+ 1, . . . , (n− b+ 1)

Set block �: X� = Y (:, � : �+ b − 1) + Y (:, �− b : �− 1)
end

– Set the matrix X = [X1, Xb+1, X2b+1, X3b+1, . . . , X(n−b+1)]
2. Inner-block summation

– Set the first block Y1 = X(1 : b, :) +X(n− b+ 1 : n, :)
– for � = b+ 1, 2b+ 1, 3b+ 1, . . . , (n− b+ 1)

Set block �: Y� = X(� : �+ b− 1, :) +X(�− b : �− 1, :)
end

– Set the matrix Y = [Y1; Yb+1; Y2b+1; Y3b+1; . . . , Y(n−b+1)]
T

3. Compute Wk = ‖Y ‖2F which is the same as wT
t wt on level k.

• Store Tk = Y .
end

3.2. Fast computation of the product KT z̃ on all levels. We next consider
how to compute z̃ = z−Kũ and wT

t z̃. Since K as a BCCB matrix is diagonalizable by
the fast Fourier transform (FFT) [32, 52, 65], computing z̃ requires only O(n2 logn)
operations on the finest level. So the remaining task is to compute such products on
other coarse levels efficiently.

To compute wT
t z̃ on level k with the latest solution ũ, we note that each wt vector

can be recovered by the stored root matrix Tk on level k from Algorithm 2. But it
is not advisable to use Tk directly for multiplication. A feasible method seems to be
the following, where we first generate the vector KT z̃ on the finest level 1 and then
add appropriate rows to produce the products wT

t z̃ on level k which is a vector of size
τk = n2/4k−1 = (n/2k−1)2.

Algorithm 3 (computation of products wT
t z̃). Let fft2(K, v) denote the process

of computing the matrix-vector product KT v via the FFT. Suppose that z̃ has been
updated before starting level k. Now on level k, we shall compute the vector V = wT

t z̃
by the following steps:
1. Complete W = fft2 (K, z̃); here W ∈ R

n2

.
If k = 1, exit the algorithm with V = W , otherwise continue;

2. for � = 0, . . . , k − 2
• Set the counter j = 0, the block size b = 2� and the number of

blocks m = n/b along one way.

• for column c = 1, 3, . . . ,m− 1
- set s = (c− 1)m;
- for row r = 1, 3, . . . ,m− 1

j=j+1;
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compute the partial sum pj =
∑1

i=0
(Ws+r+i +Ws+r+m+i).

end
end

• Set W = [p1, p2, . . . , pj ]
T and the new size m = m/2;

end
3. End the algorithm with V = W .

The algorithm costs O(kn2) = O(n2 logn) per multilevel iteration because k ≤
logn.

Thus with Algorithms 2 and 3, we can ensure that the local solvers (as smoothers
of a multilevel method) do not accumulate more than O(n2 logn) work.

3.3. Efficient implementation on the patch (coarse) level. We have thus
far covered all steps of Algorithm 1 for a deblurring model except its step 4 which
involves patches. Fortunately in many experiments, we have found that such a step
is not needed because no large patches have been observed. However, for a complete
algorithm with full generality, it remains to address the more technical problem of
how to implement such a patch step, where a patch of pixels is not aligned with any
coarse grids.

Our idea is as follows. Since all partial sums of K on coarse levels are stored (via
their root matrices), all we need to consider is to connect a patch to the concerned par-
tial sums across coarse levels—the more coarser levels are involved, the more efficient
it becomes to form the vector wt of the sum of all those columns ofK corresponding to
the detected patch. Below we shall show first how to distribute the patch onto coarse
levels, and then how to identify the coarse entries for adding toward wt.

Suppose that step 4 of Algorithm 1 has detected a patch with indices

S = {(�,m) | i1 ≤ � ≤ i2, j1 ≤ m ≤ j2}(25)

that in turn requires the solution of a corresponding problem minci,j J(ũ + Pkci,j)
similar to the subproblem (22). This task of working out wt appears quite difficult if
we are to maintain the expected efficiency of O(n2 logn). First, direct computation
of the vector wt (the sum of columns of K corresponding to the pixels in the patch)
is not feasible, because theoretically the number of pixels in a patch S may be up to
O(n2). Second, to motivate the ideas, suppose S can be grouped into blocks of pixels
aligned with level k1 plus the remaining ones aligned with level k2. Then the vector
wt that we are to compute is simply a sum of those (block) columns from levels k1 and
k2. Therefore we only have to think of a way to divide S into a set of largest possible
blocks. It turns out that this is possible to implement, as illustrated, respectively,
in Figures 1 (n = 8) and 2 (n = 16) for two cases of small images n × n, where the
blocks (from different levels) are shown as boxed. Clearly finding the large blocks
mimics the idea of assigning far field interaction boxes in a fast multipole method
[40, 32].

Two algorithms are given below. The first one is to work out the blocks as shown
in Figures 1 and 2, while the second is to further work out the vector wt and then
wT

t wt and wT
t z̃ that are needed to solve a local patch level minimization. Here the

left plots from Figures 1 and 2 show how an interval in each coordinate direction is
covered by the largest possible mesh lines from coarse levels (Stage 1 of Algorithm 4)
and the right plots show how to convert the rectangular coverings into regular boxes
on coarse levels (Stage 2 of Algorithm 4).
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Fig. 1. Illustration of n = 8 case: S = {(�,m) : 3 ≤ � ≤ 7, 2 ≤ m ≤ 6}. Here the left plot
shows how an interval in each coordinate direction is covered from coarse levels 1, 2, and the right
plot shows how to convert the rectangular coverings into regular boxes.
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Fig. 2. Illustration of n = 16 case: S = {(�,m) : 5 ≤ � ≤ 13, 3 ≤ m ≤ 11}. Here the left plot
shows how an interval in each coordinate direction is covered from coarse levels 1, 2, 3, and the right
plot shows how to convert the rectangular coverings into regular boxes.

Algorithm 4 (partition of a patch S into blocks on coarse levels). Suppose that
S has been defined by (25), as illustrated in Figure 1 where n, i1, j1, i2, and j2 are all
indices on the finest level.
Stage 1: Level location.

• It suffices to discuss the x-direction [i1, i2]. Starting from the coarsest level
with block size 2L and working down to the finest level with size 20 = 1,
segment the interval [i1, i2] into v subintervals of the maximum length possible
falling across the levels to obtain the information vectors:

Lev = [Lev1, Lev2, . . . , Levv] for indicating the level information
Sta = [Sta1, Sta2, . . . , Stav] for the starting index information
Siz = [Siz1, Siz2, . . . , Sizv] for indicating the block size.

(Here one of the vectors Lev, Siz is not necessary.)
• Likewise, in the y-direction, the interval [j1, j2] is split into w subintervals:

Ley = [Ley1, Ley2, . . . , Leyw] for indicating the level information
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Sty = [Sty1, Sty2, . . . , Styw] for the starting index information
Siy = [Siy1, Siy2, . . . , Siyw] for indicating the block size.

• In the case of maxj Levj > maxj Leyj, we shall resegment [i1, i2] starting on
the coarse level maxj Leyj.

Stage 2: Level matching.
• Set m = 0.
• for i = 1, 2, . . . , v

for j = 1, 2, . . . , w
if Sizi = Siyj, advance m = m+ 1 and accept a mesh box with the

starting address (Stai, Styj) on level Levi.
if Sizi > Siyj, set r = Sizi/Siyj, advance m = m+ r, and accept r

smaller boxes on level Leyj of size Szm = Siyj.
if Sizi < Siyj, set r = Siyj/Sizi, advance m = m+ r, and accept r

smaller boxes on level Levi of size Szm = Sizi.
end

end
On exit, the following list of vectors are obtained:

Le = [Le1, Le2, . . . , Lem] for indicating the level information
St = [(x1, y1), (x2, y2), . . . , (xm, ym)] for the starting indices
Sz = [Sz1, Sz2, . . . , Szm] for indicating the block size.

Here with Figure 1 where n = 8, i1 = 3, i2 = 7, j1 = 2, j2 = 6,
we obtain m = 13 and Le = [1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1],
St = [(3, 2), (4, 2), (3, 3), (3, 5), (5, 2), (6, 2), (5, 3), (5, 5), (7, 2), (7, 3), (7, 4),
(7, 5), (7, 6)], Sz = [1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1]. Similarly with Figure
2 where n = 16, i1 = 5, i2 = 13, j1 = 3, j2 = 11, we obtain m = 36 and the vectors
Le, St, Sz as shown in the right plot of Figure 2.

Once we have localized S onto various levels, we can use the stored information T1

(finest), T2, . . . , TL+1 (coarsest) from Algorithm 2 to work out the partial sum vector
wt (which will be used for computing wT

t wt and wT
t z̃).

Algorithm 5 (computation of wt using the partition from Algorithm 4).
Set wt to be a zero vector.
for each block j = 1, 2, . . . ,m

• set the level index k = Lej and note that the block has the starting global
indices (xj , yj);

• work out the local indices (x̄j , ȳj) on level k by the simple relations:
x̄j = 1 + (xj − 1)/2k−1, ȳj = 1 + (yj − 1)/2k−1;

• add column (ȳj − 1)2k−1 + x̄j of the partial sum matrix k to vector wt

end
(Note Tk is the root matrix of the above partial sum matrix.)

Finally our new multilevel method for the combined denoising and deblurring
problem for solving (19) is the following algorithm.

Algorithm 6. Given z and an initial guess ũ = z, with L+ 1 levels,
Pre-calculation.

1. Apply Algorithm 2 to compute all root matrices Tk and wT
t wt = ‖Tk‖2F for partial

sum matrices on level k = 1, 2, . . . , L+ 1.
Multilevel Iterations.

2. Iteration starts with uold = ũ (ũ contains the initial guess before the first iteration
and the updated solution at all later iterations).
for ν times on each level k = 1, 2, 3, . . . , L+ 1:
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• Compute z̃ = z −Kũ and form KT z̃ via the FFT.
• for each block on level k,

form each wT
t z̃ from KT z̃ and compute the minimizer c of (23).

end
• add all the corrections (from all blocks on level k), ũ = ũ + Pkc, where Pk is
the interpolation operator distributing ci,j to the corresponding b× b block on
level k as illustrated in (16).

end
3. On level k = 1, check the possible patch at each position (i, j) for some small ε

patch = {(i�, j�) : |ui�,j� − ui,j| < ε}
assumed to be a generic block of b1 × b2.
First use Algorithm 5 to compute the partial sum vector wt.
Then implement the piecewise constant update for each block as with step 2.

4. If ‖ũ − uold‖2 is small enough, exit with u = ũ or return to step 2 and continue
with the next multilevel cycle.
We remark that this algorithm looks similar to but is different from Algorithm 1

in step 2. Specifically in Algorithm 1 for denoising both the Jacobi and the Gauss–
Seidel ideas may be used. But here for the combined denoising and deblurring, we
can adopt only the Jacobi idea of updating because otherwise the number of updates
will be too high to maintain efficiency.

4. Numerical experiments. Here we first demonstrate the effectiveness of the
proposed multilevel method (Algorithm 6) in restoring some practical images and
then attempt a comparison with two other methods. Ideally it would be useful to
compare with other multilevel methods for solving the same problems. However, as
remarked, there do not appear to exist other nonlinear multilevel methods (either of
the FAS type or of the non-FAS optimization type); for linearized problems, linear
multilevel methods are not immediately applicable because of the presence of the
blurring (nonlocal) operator. However, there exist several works [4, 31] that propose
to approximate the combined problem by a denoising-like problem in an operator
splitting (fixed point) fashion, and then apply a linear multilevel method; essentially
a dense matrix is approximated by a sparse one.

Four test images (with both noise and blur) are used in the following experiments
(the bridge, the cameraman, the goldhill, and a synthetic image as shown in the left
plot of Figures 3–6). The two methods selected for comparison with our method are
the following:

• Method 1—the well-known primal-dual method (CGM) of [27]. This method
is convenient to use. It is perhaps the only approach in which the Newton
method converges as Newton-type methods do not converge for the original
(primal) formulation. Unfortunately, attempts to develop a multilevel version
of the approach have not been successful.

• Method 2—the fixed point method with the conjugate gradient solver pre-
conditioned by a multilevel preconditioner [65]. Although this method is not
multilevel, it does not assume any sparsity of the blurring operator (unlike
[4, 31]).

As usual, restoration performance is quantitatively measured by the peak signal-to-
noise ratio (PSNR)

PSNR = PSNR(r, u) = 10 log10
2552

1
mn

∑
i,j(ri,j − ui,j)2

,
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Fig. 3. Test problem 1. Left: The noisy and blurred image. Right: The restored result from
Algorithm 6.

Fig. 4. Test problem 2. Left: The noisy and blurred image. Right: The restored result from
Algorithm 6.

where ri,j and ui,j denote the pixel values of the original image and the restored image,
respectively, with lexicographically ordered vectors r, u ∈ R

mn. Here we assume
zi,j , ri,j , ui,j ∈ [0, 255]. The higher a PSNR is, the better the restoration quality is.

Quality of restoration. In the right plot of Figures 3–6, we show the test results,
respectively, from our four test examples, in the resolution of n×n = 515×512. Clearly
the restored images are visually pleasing.

Comparison with other methods and test of different resolutions. First,
to compare with the above two chosen methods, our experiments are conducted in
Matlab 2007b on a laptop with 4GB memory. The parameter α = 1 is used in
the first three examples and α = 2 in the fourth example. Second, to see how our
method behaves with increasing n, we also test them in several resolutions. The
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Fig. 5. Test problem 3. Left: The noisy and blurred image. Right: The restored result from
Algorithm 6.

Fig. 6. Test problem 4. Left: The noisy and blurred image. Right: The restored result from
Algorithm 6.

comparative results are displayed in Table 1, where “**” indicates that a method fails
to get a result due to exhaustion of memory and “*” shows when the CPU is too
excessive. Clearly we can see that (i) The CGM method [27] for smaller resolutions
(n ≤ 256) is about as fast as the fixed point method [65]. For large resolutions, it
is not useful as its demand for storage (as well as for CPU) is prohibitive. (ii) The
fixed point method [65] is more robust than the CGM because it performs better for
larger resolutions and storage is not an issue. (iii) In obtaining a similar restoration
quality, the new algorithm is definitely much faster and uses less memory than the first
two methods. And more important, our algorithm displays the expected multilevel
efficiency O(N logN) = O(n2 logn)—when the number of unknowns is increased by
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Table 1

Comparison of restoration quality and speed of uMG = u with uCGM and uFP for various
images of resolution n× n (with N = n2 unknowns), where the CGM takes about 250 steps, the FP
takes between 10 and 70 outer steps, and the multilevel algorithm takes about 3 cycles.

Problem Size CGM method [27] FP ML method [65] New algorithm 6
number n PSNR CPU PSNR CPU PSNR CPU

1 128 19.4 114.1 16.3 51.5 19.0 8.8
256 20.9 644.8 17.6 460.6 20.8 35.2
512 20.0 3326.4 18.8 352.5 19.9 145.5
1024 ** ** 21.0 12121.9 22.1 601.8
2048 ** ** * * 24.7 2510.1

2 128 20.5 113.2 16.5 51.3 19.9 8.6
256 23.1 641.6 18.0 352.5 22.7 23.4
512 21.6 3329.9 19.9 2416.9 21.7 146.4
1024 ** ** 22.7 19128.3 25.0 602.4
2048 ** ** * * 28.2 2524.8

3 128 21.9 112.7 18.6 83.9 21.7 8.6
256 24.2 644.5 20.7 654.7 24.1 34.5
512 23.1 3340.8 22.1 1759.6 23.2 147.3
1024 ** ** 24.3 12261.2 25.7 602.9
2048 ** ** * * 28.5 2505.2

4 128 22.2 112.8 14.3 138.6 21.8 8.7
256 25.0 644.5 17.7 551.6 24.9 35.2
512 22.6 3341.7 20.1 3377.5 22.8 147.1
1024 ** ** 23.9 16808.0 25.5 604.9
2048 ** ** * * 28.0 2505.7

a factor of 4 (from N = n× n = 2L × 2L pixels to 2n× 2n = 2L+1 × 2L+1), the CPU
increase is also by a factor of only slightly more than 4 or precisely by L+1

L 4.

5. Conclusions. While there exist many multilevel methods (both linear and
nonlinear) to solve the image denoising model, the only multilevel method proposed for
the challenging model of combined denoising and deblurring using the total variation
regularization is a linear multigrid method in the fixed point framework where the
blur operator is approximated by a sparse version.

In this paper, we have generalized an optimization based multilevel method pre-
viously proposed for the Gaussian denoising model to solve the combined denoising
and deblurring model. The new nonlinear algorithm is found to give good restoration
results in O(N logN) complexity. With a nearly optimal complexity, the proposed
multilevel method offers a fast solution procedure for extremely large images.
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