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Abstract. The alternating direction method of multipliers (ADMM) is a popular and efficient first-order method that

has recently found numerous applications, and the proximal ADMM is an important variant of it. The main contributions

of this paper are the proposition and the analysis of a class of inertial proximal ADMMs, which unify the basic ideas of the

inertial proximal point method and the proximal ADMM, for linearly constrained separable convex optimization. This class of

methods are of inertial nature because at each iteration the proximal ADMM is applied to a point extrapolated at the current

iterate in the direction of last movement. The recently proposed inertial primal-dual algorithm [1, Algorithm 3] and the inertial

linearized ADMM [2, Eq. (3.23)] are covered as special cases. The proposed algorithmic framework is very general in the sense

that the weighting matrices in the proximal terms are allowed to be only positive semidefinite, but not necessarily positive

definite as required by existing methods of the same kind. By setting the two proximal terms to zero, we obtain an inertial

variant of the classical ADMM, which is new to the best of our knowledge. We carry out a unified analysis for the entire class of

methods under very mild assumptions. In particular, convergence, as well as asymptotic o(1/
√
k) and nonasymptotic O(1/

√
k)

rates of convergence, are established for the best primal function value and feasibility residues, where k denotes the iteration

counter. The global iterate convergence of the generated sequence is established under an additional assumption. We also

present extensive experimental results on total variation based image reconstruction problems to illustrate the profits gained

by introducing the inertial extrapolation steps.
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1. Introduction. Let m,n1 and n2 be positive integers, f : <n1 → < and g : <n2 → < be closed

convex functions, X ⊆ <n1 and Y ⊆ <n2 be closed convex sets, and A ∈ <m×n1 , B ∈ <m×n2 and b ∈ <m.

In this paper, we consider linearly constrained separable convex optimization problem of the form

min
x,y
{f(x) + g(y) : s.t. Ax+By = b, x ∈ X , y ∈ Y}. (1.1)

A very important special case of (1.1) is given by miny{f(By) + g(y) : y ∈ <n2}, or, equivalently,

min
x,y
{f(x) + g(y) : s.t. − x+By = 0, x ∈ <n1 , y ∈ <n2}. (1.2)

The functions f and g in (1.2) are often further assumed to be extended real-valued in order to incorporate

additional side constraints. Problems like (1.2) arise from diverse applications such as signal and image

reconstruction, compressive sensing and machine learning, etc., see, e.g., [3, 4, 5, 6, 7, 8, 9, 10] and references

therein. On the other hand, both A and B can be generic linear operators as well, e.g., in compressive

principal component pursuit [11] and matrix decomposition [12], the constraints appear as A(x + y) = b,

where A represents the measurement system. In this paper, we mainly focus on (1.1), though we also diverge

to the special case (1.2) when we try to clarify connections between different algorithms.
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Two classical optimization methods are closely related to this work. They are the proximal alternating

direction method of multipliers (proximal ADMM, [13, 14, 15]) and the inertial proximal point method (inertial

PPM, [16, 17, 18]), which we will review very briefly below. We then summarize our main contributions, the

notation and the organization of this paper.

1.1. Augmented Lagrangian related methods. Let the augmented Lagrange function associated

with (1.1) be defined as

L(x, y, p) := f(x) + g(y)− 〈p,Ax+By − b〉+
β

2
‖Ax+By − b‖2,

where p ∈ <m is the Lagrange multiplier and β > 0 is a penalty parameter. Given pk ∈ <m, the classical

augmented Lagrangian method [19, 20] (abbreviated as ALM) iterates as

(xk+1, yk+1) ∈ arg min
x,y
{L(x, y, pk) : x ∈ X , y ∈ Y}, (1.3a)

pk+1 = pk − β(Axk+1 +Byk+1 − b), (1.3b)

where “arg min” represents the collection of minimizers. When f and g have structures that one can exploit,

it is favorable to utilize the separability of the objective function, rather than applying a joint minimization

with (x, y). The ADMM [13, 14] applies alternating minimization with x and y in (1.3a) in a Gauss-Seidel

fashion followed by immediate update of the dual variable p in (1.3b). Here we shall present a cyclically

equivalent form of the ADMM. Given (yk, pk) ∈ Y × <m, the ADMM in “x − p − y” order updates the

variables as follows:

xk+1 ∈ arg min
x
{L(x, yk, pk) : x ∈ X}, (1.4a)

pk+1 = pk − β(Axk+1 +Byk − b), (1.4b)

yk+1 ∈ arg min
y
{L(xk+1, y, pk+1) : y ∈ Y}. (1.4c)

Compared to the ALM, an obvious advantage of the ADMM is that it solves simpler subproblems in each

round and can utilize the structures of f and g individually. It is well known that the dual sequence {pk}
generated by (1.4) converges to an optimal solution of the dual problem if (1.1) possesses a KKT point, but

without additional conditions the sequence of primal iterates does not necessarily converge. To improve the

primal convergence, Eckstein first proposed in [15] a proximal ADMM by adding some quadratic terms to

the subproblems of (1.4). This variant will be discussed in detail in Section 2.

1.2. PPM and its inertial variant. Another closely related method is the PPM [21, 22, 23], which is

an approach for finding a zero of a maximal monotone operator T on <n. The primary PPM for minimizing

a differentiable function ψ : <n → < can be interpreted as an implicit one-step discretization method for

the ordinary differential equations (ODEs) w′ +∇ψ(w) = 0, where w : < → <n is differentiable, w′ denotes

its derivative, and ∇ψ is the gradient of ψ.

To accelerate speed of convergence of the PPM, multi-step methods have been proposed in the literature,

which can usually be viewed as certain discretizations of the second-order ODEs

w′′ + γw′ +∇ψ(w) = 0, (1.5)

where γ > 0 represents a friction parameter. For example, an implicit discretization method was proposed

in [17]. Specifically, given wk−1 and wk, the next point wk+1 is determined via

wk+1 − 2wk + wk−1

h2
+ γ

wk+1 − wk

h
+∇ψ(wk+1) = 0,
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which results in an iterative algorithm of the form

wk+1 = (I + λ∇ψ)−1(wk + α(wk − wk−1)), (1.6)

where λ = h2/(1 + γh), α = 1/(1 + γh) and I is the identity operator. Note that (1.6) can be viewed as

applying the PPM to the extrapolated point wk + α(wk − wk−1) and is usually referred as inertial PPM.

Subsequently, this inertial technique was extended to solve the maximal monotone operator inclusion problem

in [18, 24, 25, 26]. Recently, there are increasing interests in studying inertial type algorithms, e.g., inertial

forward-backward splitting methods [27, 28, 29, 30, 31, 32], inertial Douglas-Rachford operator splitting

method [33] and inertial ADMM [34]. In particular, when restricted to (1.2), the method in [29] with certain

specialized preconditioner reduces to [1, Algorithm 3], which is also a special case of the inertial proximal

ADMM proposed in this paper. Global convergence results were obtained there under roughly the same

conditions as used in this paper, but convergence rate results were not given. Our inertial algorithms also

cover an inertial ADMM as well. A method with the same name was discussed in [34] but we will explain

later that the two methods are in fact quite different.

1.3. Contributions. Our main contributions of this paper are twofold. First, we propose a class of

inertial variants of the general weighted proximal ADMM (see (2.2) and Algorithm 1), where the weighting

matrices are allowed to be positive semidefinite, but not necessarily positive definite. This class of inertial

algorithms unify and largely extend the existing inertial primal-dual algorithm [1, Algorithm 3] (i.e., inertial

variant of case 3 restricted to the special case (1.2) in Table 2.1) and the inertial linearized ADMM [2, Eq.

(3.23)] (i.e., inertial variant of case 4 in Table 2.1). Apart from these two special cases, all the other inertial

variants covered in Table 2.1, including case 3 for the generic problem (1.1), are new. In particular, by

setting both weighting matrices to zero, we obtain an inertial variant of the original ADMM (see Algorithm

2, which corresponds to inertial variant of case 1 in Table 2.1). Second, under very mild assumptions, we

establish global convergence, asymptotic o(1/
√
k) and nonasymptotic O(1/

√
k) rates of convergence for the

best primal function value and feasibility residues, where k denotes the iteration counter (see Theorems 4.3,

4.4 and 4.6). The global iterate convergence of the generated sequence is established under an additional

assumption (see Theorem 4.7). Furthermore, we evaluate the practical performance of this class of inertial

algorithms by comparing them with the corresponding original algorithms on some imaging problems.

1.4. Notation and organization. Our notation is standard, as used above in this section. The

standard inner product and `2-norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. The superscript “T ” denotes

the matrix/vector transpose operator. The fact that a matrix M is a symmetric and positive semidefinite

(resp. positive definite) is denoted by M � 0 (resp. M � 0). For any M � 0 of size n-by-n and vectors

u, v ∈ <n, we let 〈u, v〉M := uTMv and ‖u‖M :=
√
〈u, u〉M . The spectral radius of a square matrix M is

denoted by ρ(M). The identity matrix of appropriate orders will be denoted by I. Zero matrices and vectors

are simply denoted by 0. With a little abuse of notation, the columnwise adhesion of columns vectors x,

y and p, i.e., (xT , yT , pT )T , is often denoted by (x, y, p) whenever it will not incur any confusion. Other

notation will be introduced as the presentation progresses.

The rest of the paper is organized as follows. In Section 2, we describe a general proximal ADMM,

characterize it as a mixed variational inequality, and clarify its connections to some existing methods. In

Section 3, we propose a class of inertial proximal ADMMs, whose convergence is analyzed in Section 4.

Numerical results and concluding remarks are given, respectively, in Sections 5 and 6.

2. Proximal ADMM. One type of structure that is usually preserved by f and g in many applications

is that their proximity operators are easy to evaluate. Let γ > 0 be a scalar. The proximity operator of a
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closed proper convex function h : <n → (−∞,+∞] is defined as

proxhγ(x) := arg minz{h(z) + ‖z − x‖2/(2γ) : z ∈ <n}, x ∈ <n. (2.1)

In general, (1.4a) and (1.4c) are not easy to solve even when f and g are simple. To avoid inner loop, they

are usually modified by linearizing the quadratic term of L(x, y, p) with respect to x (resp., y) and meanwhile

adding a proximal term in `2-norm. This technique, which we will refer to as proximal-linearization below,

has been used extensively in, e.g., [35, 36, 37, 6, 5]. The popular primal-dual algorithm [8, 3] also modifies

one subproblem via this proximal-linearization, see [8, 3, 5]. The algorithms resulting from modifying

ADMM subproblems via proximal-linearization are special realizations of the following proximal ADMM

(generalization of the algorithm in [15]): given wk = (xk, yk, pk) ∈ X × Y × <m, iterate as

xk+1 ∈ arg min
x
{L(x, yk, pk) + ‖x− xk‖2S/2 : x ∈ X}, (2.2a)

pk+1 = pk − β(Axk+1 +Byk − b), (2.2b)

yk+1 ∈ arg min
y
{L(xk+1, y, pk+1) + ‖y − yk‖2T /2 : y ∈ Y}, (2.2c)

where S, T � 0. In particular, by setting S = (β/τ)I−βATA (resp. T = (β/η)I−βBTB), where τ > 0 (resp.

η > 0), the overlapping of components of x (resp. y) in the quadratic term of L(x, y, p) can be canceled out.

Similar algorithms have different names in the literature, such as split inexact Uzawa, proximal or linearized

ADMM, see, e.g., [38, 8, 5, 2]. This general proximal ADMM framework goes back to at least [38], where

the focus is variational inequality (VI) problem with separable structures. See also [39] for a comprehensive

study on the convergence of (2.2).

2.1. Mixed VI characterization. We now present the mixed VI characterization of the primal-dual

optimality conditions of (1.1) and the proximal ADMM (2.2). As before, we denote the dual variable by p.

Define W, w, θ and F , respectively, by W := X × Y × <m,

w :=

 x

y

p

 , θ(w) := f(x) + g(y), F (w) :=

 0 0 −AT

0 0 −BT

A B 0


 x

y

p

−
 0

0

b

 . (2.3)

Clearly, F is monotone. Throughout this paper, we assume that the set of KKT points of (1.1), denoted

by W∗, is nonempty. Then solving (1.1) amounts to determining a solution of the mixed VI problem: find

w∗ ∈ W such that

θ(w)− θ(w∗) + 〈w − w∗, F (w∗)〉 ≥ 0, ∀w ∈ W. (2.4)

The following result explains how the proximal ADMM can be interpreted as a proximal-like method applied

to (2.4). We omit the proof since it is a simple generalization of the result in [40].

Theorem 2.1. The new point wk+1 = (xk+1, yk+1, pk+1) generated by the proximal ADMM (2.2) from

a given wk = (xk, yk, pk) ∈ W satisfies

wk+1 ∈ W, θ(w)− θ(wk+1) +
〈
w − wk+1, F (wk+1) +G(wk+1 − wk)

〉
≥ 0, ∀w ∈ W, (2.5)

where G is defined by

G :=

 S 0 0

0 βBTB + T −BT

0 −B 1
β I

 . (2.6)
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Table 2.1

Some special cases of the proximal ADMM (2.2) for (1.1). G is given in (2.6).

Case (1.4a) (1.4c) S T G � 0

1 intact intact 0 0 never

2 prox-linearize intact β
τ I − βA

TA 0 never

3 intact prox-linearize 0 β
η I − βB

TB never

4 prox-linearize prox-linearize β
τ I − βA

TA β
η I − βB

TB
0 < τ < 1/ρ(ATA)

0 < η < 1/ρ(BTB)

5 + 1
2‖x− x

k‖2S + 1
2‖y − y

k‖2T S � 0 T � 0 depends

2.2. Related methods. Clearly, we recover the original ADMM by letting S = 0 and T = 0 in (2.2). If

we merely proximal-linearize (1.4a) at xk, the resulting algorithm corresponds to (2.2) with S = β
τ I−βA

TA

and T = 0. Alternatively, we can proximal-linearize (1.4c) and keep (1.4a) intact, in which case the resulting

algorithm corresponds to (2.2) with S = 0 and T = β
η I − βB

TB. Clearly, G � 0 never holds for these three

cases. On the other hand, if we proximal-linearize both subproblems simultaneously, the resulting algorithm

corresponds to (2.2) with S = β
τ I − βA

TA and T = β
η I − βB

TB. In this case, G is indeed positive definite

if τ, η > 0 are sufficiently small. These special cases of (2.2) are summarized in Table 2.1.

We now focus on (1.2) temporarily. Due to A = −I and resort to the relation (∂f)−1 = ∂f∗, see,

e.g., [41], where ∂f and f∗ denote, respectively, the subdifferential operator and the convex conjugate of f ,

we can eliminate the x variable in w in (2.4). When applying ADMM (1.4) to (1.2), there is no need to

modify (1.4a) since it already amounts to evaluating the proximity operator of f . It is only necessary to

proximal-linearize (1.4c). The resulting algorithm corresponds to case 3 in Table 2.1 and appears as

xk+1 = proxf1/β(Byk − pk/β), (2.7a)

pk+1 = pk − β(−xk+1 +Byk), (2.7b)

yk+1 = proxgη/β
(
yk − ηBT (Byk − xk+1 − pk+1/β)

)
. (2.7c)

From [3, 5], (2.7) is equivalent to the primal-dual algorithm [42, 8, 3]. Subsequently, it was shown in [43]

that (2.7) can be explained as a weighted PPM. Specifically, wk+1 = (yk+1, pk+1) generated by (2.7) from a

given wk = (yk, pk) satisfies (2.5) withW, w, θ, F and G defined, respectively, asW = <n2×<m, w = (y, p),

θ(w) = g(y) + f∗(−p),

F (w) =

(
0 −BT

B 0

)(
y

p

)
and G =

(
β
η I −BT

−B 1
β I

)
. (2.8)

Clearly, G defined in (2.8) is symmetric and positive definite if 0 < η < 1/ρ(BTB). In this sense, the

primal-dual algorithm [42, 8, 3] for (1.2) also falls into the framework of PPM as specified in (2.5).

2.3. Motivation of this paper. Recently, we proposed in [2, Eq. (3.23)] an inertial variant of case

4 in Table 2.1. Global iterate convergence and certain convergence rate results were established under the

condition that the weighting matrix G defined in (2.6) is positive definite. Our numerical results have shown

that the inertial extrapolation steps can accelerate convergence in practice. When restricted to (1.2), we

can directly extend the results in [2] to the inertial primal-dual algorithm [1, Algorithm 3], because the

primal-dual algorithm [42, 8, 3] is an application of a weighted PPM [43].

We emphasize that the convergence guarantee of [2, Eq. (3.23)] and [1, Algorithm 3] depends heavily on

the positive definiteness of G, which, however, when restricted to (1.1) never holds for the first three cases
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in Table 2.1. On the other hand, in many applications the matrices A and B have special structures and,

as a result, both ADMM subproblems (1.4a) and (1.4c) can be solved exactly and conveniently without any

approximation or modification. For such cases, it is not desired to modify either ADMM subproblem. It is

thus desirable to consider inertial variant of the original ADMM, the convergence of which, however, cannot

be covered by existing results. This motivates the current work.

3. Inertial proximal ADMM. We now present our inertial proximal ADMM. At each iteration, the

inertial proximal ADMM first extrapolates at the current point in the direction of last movement and then

applies the proximal ADMM to the extrapolated point. The overall algorithm is summarized below.

Algorithm 1 (Inertial proximal ADMM). Given S � 0, T � 0, (x0, y0, p0) ∈ W, β > 0 and a sequence

of nonnegative parameters {αk}∞k=0. Let (x−1, y−1, p−1) = (x0, y0, p0). For k ≥ 0, iterate as

(x̄k, ȳk, p̄k) = (xk, yk, pk) + αk(xk − xk−1, yk − yk−1, pk − pk−1), (3.1a)

xk+1 ∈ arg min
x∈X
L(x, ȳk, p̄k) + ‖x− x̄k‖2S/2, (3.1b)

pk+1 = p̄k − β(Axk+1 +Bȳk − b), (3.1c)

yk+1 ∈ arg min
y∈Y
L(xk+1, y, pk+1) + ‖yk − ȳk‖2T /2. (3.1d)

Let w̄k := wk + αk(wk − wk−1). According to Theorem 2.1, wk+1 := (xk+1, yk+1, pk+1) generated by (3.1)

satisfies

wk+1 ∈ W, θ(w)− θ(wk+1) +
〈
w − wk+1, F (wk+1) +G(wk+1 − w̄k)

〉
≥ 0, ∀w ∈ W, (3.2)

where W, w, θ and F are defined in (2.3), and G is given by (2.6).

Clearly, the proposed algorithmic framework (3.1) unifies [1, Algorithm 3] and [2, Eq. (3.23)]. It applies

to the general problem (1.1), rather than (1.2) only, and contains inertial variants of linearized ADMM with

either one or both of the subproblems being proximal-linearized. Moreover, S and T are not restricted to

the special form c1I − c2ATA or c1I − c2BTB for some constants c1, c2 > 0 associated with the linearized

ADMM, but can be generic positive semidefinite matrices. These are all new features of the proposed

algorithm framework. Our unified analysis for the entire class of algorithms and the convergence results

established under the relaxed condition S � 0 and T � 0 are new to the literature.

By setting S = 0 and T = 0 in (3.1), we obtain an inertial ADMM, which is summarized below.

Algorithm 2 (Inertial ADMM). Given (y0, p0) ∈ Y × <m, β > 0 and a sequence of nonnegative

parameters {αk}∞k=0. Let (y−1, p−1) = (y0, p0). For k ≥ 0, iterate as

(ȳk, p̄k) = (yk, pk) + αk(yk − yk−1, pk − pk−1), (3.3a)

xk+1 ∈ arg min
x∈X
L(x, ȳk, p̄k), (3.3b)

pk+1 = p̄k − β(Axk+1 +Bȳk − b), (3.3c)

yk+1 ∈ arg min
y∈Y
L(xk+1, y, pk+1). (3.3d)

Though Algorithm 2 has exactly the same name as [34, Algorithm 5], we need to point out that the two

algorithms are in fact quite different. Here we will not write out the algorithm of [34, Algorithm 5] as it

will be tedious. We only point out the main differences between the two algorithms. First, [34, Algorithm

5] is designed for solving (1.2) only, while our Algorithm 2 solves the general problem (1.1). Second, [34,

Algorithm 5] is an application of the inertial Douglas-Rachford splitting method [33] applied to the dual
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problem of (1.2), while our Algorithm 2 is not. Third, the parametric conditions assumed in [34, Algorithm

5] to ensure global convergence are very different from ours (see Section 4).

4. Convergence analysis. In this section, we establish global convergence and convergence rate results

in the best function value and feasibility residues of the proposed inertial proximal ADMM. In particular,

the obtained results apply to the inertial ADMM described in Algorithm 2 and extend those in [2]. We make

the following assumption on the sequence of parameters {αk}∞k=0.

Assumption 1. Assume that {αk}∞k=0 is chosen such that (i) for all k ≥ 0, 0 ≤ αk ≤ α for some

α ∈ [0, 1), and (ii) the sequence of points {wk}∞k=0 generated by (3.1), or equivalently, (3.2), satisfies

∞∑
k=0

αk‖wk − wk−1‖2G <∞. (4.1)

We note that one way to ensure Assumption 1 in practice is to determine {αk}∞k=0 adaptively. Alter-

natively, it is simultaneously satisfied if {αk}∞k=0 satisfies some further conditions, see, e.g., [18, Prop. 2.1],

[44, Sec. 2], [25, Prop. 2.5] and Proposition 4.5 in Section 4. We first give some lemmas which are useful in

our analysis.

Lemma 4.1. Let {wk}∞k=0 be generated by the inertial proximal ADMM given in Algorithm 1. Then, for

any w∗ ∈ W∗, it holds that

〈A(xk+1 − x∗), pk+1 − p∗〉 ≥ 〈xk+1 − x∗, S(xk+1 − x̄k)〉. (4.2)

Proof. Let k ≥ 0 and x ∈ X . It follows from the optimality condition of (3.1b) that

f(x)− f(xk+1) +
〈
x− xk+1, −AT pk+1 + S(xk+1 − x̄k)

〉
≥ 0. (4.3)

Since w∗ ∈ W∗, by setting w = (x, y∗, p∗) in (2.4) we obtain

f(x)− f(x∗) +
〈
x− x∗, −AT p∗

〉
≥ 0. (4.4)

Setting x = x∗ in (4.3) and x = xk+1 in (4.4), and adding them together, we get (4.2) immediately.

The following lemma gathers several useful facts which facilitate the convergence analysis of the proposed

inertial proximal ADMM. Since its proof follows essentially from [18, 44, 24], we omit the details.

Lemma 4.2. Suppose that {αk}∞k=0 satisfies Assumption 1. Let {wk}∞k=0 be generated by the inertial

proximal ADMM given in Algorithm 1. The following two statements hold.

(i) Let w̄k := wk + αk(wk − wk−1), then

∞∑
k=0

‖wk+1 − w̄k‖2G <∞, (4.5)

and hence limk→∞ ‖wk+1 − w̄k‖G = 0.

(ii) For any w∗ ∈ W∗, lim
k→∞

‖wk − w∗‖G exists, and furthermore, it holds that

‖wk − w∗‖2G ≤ ‖w0 − w∗‖2G +
2

1− α

∞∑
j=1

αj‖wj − wj−1‖2G, ∀ k ≥ 1. (4.6)
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With Lemma 4.2 at hand and by using the special structures of (1.1) and (3.1), we are able to establish

the following theorem on the feasibility and objective convergence of the inertial proximal ADMM.

Theorem 4.3 (Convergence). Suppose that {αk}∞k=0 satisfies Assumption 1. Let {wk}∞k=0 be generated

by the inertial proximal ADMM given in Algorithm 1. Then, we have the following results.

(i)
∑∞
k=1 ‖Axk +Byk − b‖2 <∞, and hence limk→∞ ‖Axk +Byk − b‖ = 0;

(ii) The objective function value f(xk) + g(yk) converges to the optimal value of (1.1) as k →∞.

Proof. (i) From (3.1c), S, T � 0 and the definition of G, we obtain that

‖Axk+1 +Byk+1 − b‖2 = ‖(Byk+1 − pk+1/β)− (Bȳk − p̄k/β)‖2 ≤ 1

β
‖wk+1 − w̄k‖2G. (4.7)

The conclusion
∑∞
k=1 ‖Axk +Byk − b‖2 <∞ follows from (4.7) and (4.5).

(ii) Let w∗ = (x∗, y∗, p∗) ∈ W∗. It follows from setting w = (xk, yk, p∗) in (2.4) and the definition of F in

(2.3) that

f(xk) + g(yk)− f(x∗)− g(y∗) ≥ 〈p∗, Axk +Byk − b〉. (4.8)

Therefore, it follows from limk→∞(Axk +Byk − b) = 0 that

lim inf
k→∞

(
f(xk) + g(yk)

)
≥ f(x∗) + g(y∗). (4.9)

On the other hand, by setting w = w∗ in (3.2) we obtain that

f(x∗) + g(y∗)− f(xk+1)− g(yk+1) ≥ −〈p∗, Axk+1 +Byk+1 − b〉+ 〈wk+1 − w∗, G(wk+1 − w̄k)〉. (4.10)

It follows from Axk +Byk → b, ‖wk+1 − w̄k‖G → 0 and the boundness of {‖wk − w∗‖G}∞k=0 that

lim sup
k→∞

(
f(xk) + g(yk)

)
≤ f(x∗) + g(y∗), (4.11)

which, together with (4.9), completes the proof of (ii).

The following theorem establishes certain asymptotic convergence results of the proposed inertial prox-

imal ADMM. Specifically, parts (ii) and (iii) of the theorem present asymptotic o(1/
√
k) convergence rate

results measured by the best residues in primal feasibility and function values, respectively. These results

are consequences of the structures of (1.1) and the iterative scheme (3.1), as well as part (i) of the theorem,

the validity of which had been implied by the analysis in [18] for the inertial PPM. We note that little-o

convergence results already appeared in, e.g., [45] for parallel multi-block ADMM.

Theorem 4.4 (Asymptotic convergence rate). Suppose that {αk}∞k=0 satisfies Assumption 1. Let

{wk}∞k=0 be generated by the inertial proximal ADMM given in Algorithm 1. Then, there hold as k →∞,

(i) min
1≤i≤k

‖wi − w̄i−1‖G = o(1/
√
k),

(ii) min
1≤i≤k

‖Axi +Byi − b‖ = o(1/
√
k),

(iii) min
1≤i≤k

|f(xi) + g(yi)− f(x∗)− g(y∗)| = o(1/
√
k).

Proof. Let 1 ≤ i ≤ k be arbitrarily fixed. Part (i) follows directly from (4.5) and the Cauchy principle.

Part (ii) follows immediately by noting (4.7). From (4.8) and (4.10), we know that

|f(xi) + g(yi)− f(x∗)− g(y∗)| ≤ |〈p∗, Axi +Byi − b〉|+ |〈wi − w∗, G(wi − w̄i−1)〉|, (4.12)
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which, together with (i), (ii) and Lemma 4.2, completes the proof of (iii).

Remark 1. We note that the asymptotic o(1/
√
k) convergence result of the best function value residue

given in Part (iii) of Theorem 4.4 alone does not indicate a convergence speed of the algorithm because the

proposed inertial proximal ADMM is an infeasible one in general. However, since we also establish the same

result for the best feasibility residual, a combination of the two results given in Parts (ii) and (iii) of Theorem

4.4 implies an asymptotic o(1/
√
k) convergence speed of the algorithm. Similar remarks also apply to the

nonasymptotic convergence results given below in Theorem 4.6.

The results given in Theorem 4.4 are asymptotic in the sense that they hold only when k →∞. To derive

some nonasymptotic convergence results, we further assume that {αk}∞k=0 is monotonically nondecreasing

and bounded above by some 0 ≤ α < 1/3. In fact, these conditions on {αk}∞k=0 also ensure the validity

of Assumption 1. The following proposition summarizes this fact and an additional bound result, which

are very useful in our nonasymptotic convergence analysis. Since its proof stems from previous results in

[18, 44, 25], we omit the details.

Proposition 4.5. Suppose that, for all k ≥ 0, 0 ≤ αk ≤ αk+1 ≤ α for some 0 ≤ α < 1/3. Let {wk}∞k=0

be generated by the inertial proximal ADMM Algorithm 1. Then Assumption 1 is valid. Furthermore, it

holds for any w∗ ∈ W∗ that

∞∑
k=1

‖wk − wk−1‖2G ≤
2‖w0 − w∗‖2G

1− 3α
. (4.13)

Now, we are ready to establish our nonasymptotic convergence results.

Theorem 4.6 (Nonasymptotic convergence rate). Suppose that 0 ≤ αk ≤ αk+1 ≤ α < 1
3 for all k. Let

{wk}∞k=0 be generated by the inertial proximal ADMM given in Algorithm 1. Then, it holds for any k ≥ 1

and w∗ = (x∗, y∗, p∗) ∈ W∗ that

(i) min
1≤i≤k

‖wi − w̄i−1‖G ≤ C1/
√
k,

(ii) min
1≤i≤k

‖Axi +Byi − b‖ ≤ C2/
√
k,

(iii) min
1≤i≤k

|f(xi) + g(yi)− f(x∗)− g(y∗)| ≤ C1

(
‖p∗‖/

√
β + C3

)
/
√
k,

where C1 := 2
√

1+α2

1−3α‖w
0 − w∗‖G, C2 := C1/

√
β and C3 :=

√
1 + 4α

(1−α)(1−3α)‖w
0 − w∗‖G.

Proof. It follows from the definition of w̄k and (4.13) that

k∑
i=1

‖wi − w̄i−1‖2G ≤ 2

(
k∑
i=1

‖wi − wi−1‖2G + α2
k∑
i=1

‖wi−1 − wi−2‖2G

)

≤ 2

( ∞∑
i=1

‖wi − wi−1‖2G + α2
∞∑
i=1

‖wi−1 − wi−2‖2G

)

= 2(1 + α2)

∞∑
i=1

‖wi − wi−1‖2G ≤
4(1 + α2)‖w0 − w∗‖2G

1− 3α
, (4.14)

where the “=” follows from w0 = w−1. Part (i) follows immediately from (4.14), and part (ii) follows from

(4.7). To prove part (iii), we first note from (4.6) and (4.13) that, for any i ≥ 1,

‖wi − w∗‖2G ≤ ‖w0 − w∗‖2G +
2

1− α

∞∑
j=1

αj‖wj − wj−1‖2G ≤
(

1 +
4α

(1− α)(1− 3α)

)
‖w0 − w∗‖2G = C2

3 .

This, together with (4.12), completes the proof of part (iii).
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Remark 2. For the proximal ADMM (2.2), the quantity ‖wk−wk−1‖G is monotonically nonincreasing

with k. However, this property does not hold for its inertial variant (3.1). As a result, we are not able to

remove the “min1≤i≤k” in our results. We note that either with or without the “min1≤i≤k”, a nonasymptotic

O(1/
√
k) convergence rate would imply that an ε-accuracy solution in the sense that ‖wk − w̄k−1‖G ≤ ε is

obtainable within no more than O(1/ε2) iterations.

Remark 3. Assume that αk = 0 for all k. Then the “min1≤i≤k” can be removed by setting i = k in

Theorems 4.4 and 4.6. If further restricted to the ADMM (1.4), i.e., S = 0 and T = 0, then the asymptotic

o(1/
√
k) and the nonasymptotic O(1/

√
k) convergence rate results given in Theorems 4.4 and 4.6 coincide

with those given in [46, Theorem 13, Theorem 15]. It is well-known that the ADMM is a dual application

of the Douglas-Rachford splitting method, and it has been shown in [46, Theorem 8, Sec. 6.1.1] that the

o(1/
√
k) convergence rate of Douglas-Rachford splitting method measured in fixed point residue is tight. It is

also pointed out in [46] that the Douglas-Rachford splitting method (including the ADMM as a special case)

can be nearly as slow as the subgradient method in the nonergodic sense.

Note that Theorem 4.3 does not ensure the iterate convergence of {wk}∞k=0. In fact, the iterate conver-

gence of {wk}∞k=0 can be guaranteed under some further conditions. The convergence result given in the

next theorem cannot be derived from analytic techniques analogous to those existing in the literature for

inertial type methods. Its validity relies on the structure of the problem and the iterative scheme considered

in this paper.

Theorem 4.7 (Convergence). Suppose that {αk}∞k=0 satisfies Assumption 1. Let {wk}∞k=0 be generated

by the inertial proximal ADMM given in Algorithm 1. Then, {(S+βATA)xk}∞k=1, {(T +βBTB)yk}∞k=1 and

{pk}∞k=1 are all bounded. Furthermore, if S + βATA � 0 and T + βBTB � 0, then {wk}∞k=0 converges to a

member of W∗ as k →∞.

Proof. For any w∗ ∈ W∗, it follows from Lemma 4.2 that limk→∞ ‖wk − w∗‖G exists. Thus, the

sequence {Gwk}∞k=0 must be bounded. As a result, it follows from the definition of G in (2.6) that the

sequences {Sxk}∞k=0, {Tyk}∞k=0 and {Byk − pk/β}∞k=0 must be all bounded. This, together with part (ii) of

Theorem 4.3, implies the boundedness of {Axk + pk/β}∞k=0. Moreover, we know from (4.2) that

〈A(xk − x∗), pk − p∗〉 ≥ 〈xk − x∗, S(xk − x̄k−1)〉 ≥ −(‖xk − x∗‖2S + ‖xk − x̄k−1‖2S)/2,

for k ≥ 1. By further considering the boundedness of {Sxk}∞k=0, we deduce that 〈A(xk − x∗), pk − p∗〉 is

bounded from below for k ≥ 1. Then, by the elementary equality

‖A(xk − x∗)‖2 + ‖(pk − p∗)β‖2 = ‖(Axk + pk/β)− (Ax∗ + p∗/β)‖2 − (2/β)〈A(xk − x∗), pk − p∗〉,

it follows that {Axk}∞k=0 and {pk}∞k=0 are bounded, and so is the sequence {Byk}∞k=0 due to the fact that

limk→∞(Axk + Byk − b) = 0. Therefore, {(S + βATA)xk}∞k=0, {(T + βBTB)yk}∞k=0 and {pk}∞k=0 are all

bounded.

Now, we assume that both S + βATA and T + βBTB are positive definite. In this case, it is clear

that {wk}∞k=0 is bounded and must have a limit point. Suppose that w∗ is any limit point of {wk}∞k=0 and

wkj → w∗ as j → ∞. Since W is closed, w∗ ∈ W. Furthermore, by taking the limit over k = kj → ∞ in

(3.2) and noting that G(wkj − w̄kj−1)→ 0, we obtain

θ(w)− θ(w∗) + 〈w − w∗, F (w∗)〉 ≥ 0.

Since w can vary arbitrarily inW, we conclude that w∗ ∈ W∗. That is, any limit point of {wk}∞k=0 must also

lie in W∗. It remains to show the uniqueness of the limit points of {wk}∞k=0. Suppose that w∗` = (x∗` , y
∗
` , p
∗
` ),
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` = 1, 2, are two limit points of {wk}∞k=0 and limj→∞ wij = w∗1 , limj→∞ wkj = w∗2 . By Lemma 4.2,

limk→∞ ‖wk − w∗` ‖G exists for ` = 1, 2. Assume that limk→∞ ‖wk − w∗` ‖G = v` for ` = 1, 2. By taking the

limit over k = ij →∞ and k = kj →∞ in the equality

‖wk − w∗1‖2G − ‖wk − w∗2‖2G = ‖w∗1 − w∗2‖2G + 2〈w∗1 − w∗2 , w∗2 − wk〉G,

we obtain v1 − v2 = −‖w∗1 − w∗2‖2G = ‖w∗1 − w∗2‖2G. Thus, ‖w∗1 − w∗2‖G = 0. Since G is positive semidefinite,

this implies that Gw∗1 = Gw∗2 , or equivalently, Sx∗1 = Sx∗2, Ty∗1 = Ty∗2 and By∗1 − p∗1/β = By∗2 − p∗2/β. Since

Ax∗1 +By∗1 = Ax∗2 +By∗2 = b, it follows that Ax∗1 +p∗1/β = Ax∗2 +p∗2/β. On the other hand, by the definition

of w∗1 and w∗2 , it follows that

f(x∗1)− f(x∗2) +
〈
x∗1 − x∗2, −AT p∗2

〉
≥ 0 and f(x∗2)− f(x∗1) +

〈
x∗2 − x∗1, −AT p∗1

〉
≥ 0.

By adding the two inequalities above together, we get 〈A(x∗1 − x∗2), p∗1 − p∗2〉 ≥ 0, and thus

‖A(x∗1 − x∗2)‖2 + ‖(p∗1 − p∗2)/β‖2 ≤ ‖(Ax∗1 + p∗1/β)− (Ax∗2 + p∗2/β)‖2 = 0.

It therefore holds that Ax∗1 = Ax∗2, p∗1 = p∗2, and hence By∗1 = By∗2 . This together with Sx∗1 = Sx∗2 and

Tx∗1 = Tx∗2 implies that (S + βATA)(x∗1 − x∗2) = 0 and (T + βBTB)(y∗1 − y∗2) = 0. Since S + βATA and

T +βBTB are positive definite, we deduce that x∗1 = x∗2 and y∗1 = y∗2 . Therefore, {wk}∞k=0 converges to some

point in W∗ as k →∞.

We give the following remarks on the convergence results presented in Theorem 4.7.

Remark 4. The conditions S + βATA � 0 and T + βBTB � 0 to ensure the iterate convergence of

{wk}∞k=0 are in fact not sufficient to ensure the positive definiteness of G in (2.6). For monotone operator

inclusion problem, iterate convergence cannot be guaranteed in general under the relaxed condition that G is

only positive semidefinite, although part of the results existing in the literature can indeed be remained. The

reason that we are able to establish iterate convergence under the relaxed condition that G is only positive

semidefinite is because we are restricted to the convex optimization problem (1.1) which has useful structures.

Remark 5. The conditions S + βATA � 0 and T + βBTB � 0 to ensure the iterate convergence of

{wk}∞k=0 are in fact very mild. This can be seen by assuming S = 0 and T = 0. In this case, these conditions

are essentially requiring that both A and B have full column rank, which are commonly assumed to ensure

solution uniqueness of (1.4a) and (1.4c) and to guarantee the iterate convergence, see, e.g., [9], where the

focus is the special case (1.2). See also remarks in [4].

Remark 6. As mentioned in Section 2, the inertial proximal ADMM reduces to the inertial linearized

ADMM [2, Eq. (3.23)] if S = β
τ I − βATA and T = β

η I − βBTB. By Theorem 4.7, we know that the

conditions 0 < τ ≤ 1/ρ(ATA) and 0 < η ≤ 1/ρ(BTB) suffice for the iterate convergence. This, somewhat,

closes the gap between the convergence requirements 0 < τ < 1/ρ(ATA) and 0 < η < 1/ρ(BTB) in [2] for

inertial linearized ADMM and 0 < τ ≤ 1/ρ(ATA) and 0 < η ≤ /ρ(BTB) in [47, 39] for linearized ADMM.

Remark 7. The iterate convergence given in Theorem 4.7 is stronger than convergence in function

value for the accelerated methods in [48, 37], which in fact can also be viewed as inertial type methods. Our

stronger result is obtained at the cost of more restrictive conditions on {αk}∞k=0.

5. Numerical results. In this section, we present numerical results to compare the performance of

the proximal ADMM (2.2) and its inertial variant (3.1). We carried out two sets of experiments. In the first

set of experiments, we concentrate on a constrained total variation (TV) minimization problem for image
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reconstruction from incomplete Walsh-Hadamard coefficients. The problem is in the form of (1.2) and the

resulting ADMM subproblem (1.4c) cannot be easily solved. We thus compare the linearized ADMM (2.7)

with its inertial variant, i.e., S = 0 and T = β
η I−βB

TB in (2.2) and (3.1), respectively. Since this linearized

ADMM is equivalent to the well-known primal-dual algorithm by Chambolle and Pock [3], we will refer to

(2.7) and its inertial variant as CP and iCP, respectively. Note that iCP is exactly the inertial primal-dual

algorithm [1, Algorithm 3]. The performance of CP relative to other state-of-the-art algorithms is well

illustrated in the literature, see, e.g., [3, 6, 7, 49]. In the second set of experiments, we compare the original

ADMM (1.4), i.e., S = 0 and T = 0 in (2.2), with its inertial variant (3.3) (abbreviated as iADMM) on

an unconstrained TV regularization problem for image reconstruction from incomplete wavelet coefficients,

for which both ADMM subproblems are easily solvable. Since the problem is unconstrained, for this set of

experiments we also present results on the evolution of objective function values as the iteraton/CPU time

proceeds and compare with CP and iCP. All algorithms were implemented in MATLAB, and the experiments

were performed with Microsoft Windows 8 and MATLAB v7.13 (R2011b), running on a 64-bit Lenovo laptop

with an Intel Core i7-3667U CPU at 2.00 GHz and 8 GB of memory.

5.1. Compressive image reconstruction based on TV minimization. In compressive image re-

construction, one tries to recover an image from a number of its linear measurements, similar as in compressive

sensing. The reconstruction is realized via TV minimizations, which have been widely used since the pioneer-

ing work [50] and have shown to give favorable results with well-preserved edges. Another very important

reason of the popularity of TV minimizations for image restoration is the availability of very fast numerical

algorithms, see, e.g., [51, 52, 53]. Exact reconstruction of piecewise constant images from their incomplete

frequencies via TV minimization was first obtained in [54]. Lately, it was shown in [55] that an image can be

accurately recovered to within its best s-term approximation of its gradient from approximately O(s log(n2))

nonadaptive linear measurements, where the underlying image is of size n-by-n.

In the following, we let B(1), B(2) ∈ <n2×n2

be the first-order global forward finite difference matrices

(with certain boundary conditions assumed) in the horizontal and the vertical directions, respectively. Let

Bi ∈ <2×n2

, i = 1, 2, . . . , n2, be the corresponding first-order local forward finite difference operator at the

ith pixel, i.e., each Bi is a two-row matrix formed by stacking the ith rows of B(1) and B(2). Let y∗ ∈ <n2

be

an original n-by-n image, whose columns are stacked in an upper-left to lower-right order to form a vector

of length n2. Given a set of linear measurements b = Ay∗ ∈ <q, where A : <n2 → <q is a linear operator,

the theory developed in [55] guarantees that one can reconstruct y∗ from A and b to within a certain high

accuracy, as long as A satisfies certain technical conditions. Specifically, to reconstruct y∗ from A and b, one

seeks an image that fits the observation data and meanwhile has the minimum TV norm, i.e., a solution of

the following TV minimization problem

min
y∈<n2

∑n2

i=1
‖Biy‖+ ι{y: Ay=b}(y). (5.1)

Here ιY(y) denotes the indicator function of a set Y, i.e., ιY(y) is equal to 0 if y ∈ Y and ∞ otherwise. For

xj ∈ <n
2

, j = 1, 2, we define

x :=

(
x1

x2

)
∈ <2n2

, xi :=

(
(x1)i

(x2)i

)
∈ <2, i = 1, 2, . . . , n2, B :=

(
B(1)

B(2)

)
∈ <2n2×n2

. (5.2)

Note that x = (x1, x2) and {xi : i = 1, 2, . . . , n2} denote the same set of variables.
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Let f : <n2 → (−∞,∞] and g : <2n2 → (−∞,∞) be, respectively, defined as

f(x) := f(x1, x2) =
∑n2

i=1
‖xi‖, x = (x1, x2) ∈ <2n2

, (5.3a)

g(y) := ι{y: Ay=b}(y), y ∈ <n
2

. (5.3b)

Then, (5.1) can be rewritten as miny∈<n2 f(By)+g(y), which is clearly in the form of (1.2) after introducing

the constraints −x + By = 0. Let A∗ be the adjoint operator of A and I be the identity operator. In our

experiments, the linear operator A satisfies AA∗ = I. Therefore, the proximity operator of g is given by

proxg(y) = y +A∗(b−Ay), y ∈ <n
2

. (5.4)

Note that the proximity operator of an indicator function reduces to the orthogonal projection onto the

underlying set. The proximity parameter is omitted because it is irrelevant in this case. On the other hand,

with the convention 0/0 = 0, the proximity operator of “‖ · ‖” is given by

prox‖·‖η (xi) = max {‖xi‖ − η, 0} ×
xi
‖xi‖

, xi ∈ <2, η > 0. (5.5)

Furthermore, it is easy to observe from (5.3a) that f is separable with respect to xi and thus the proximity

operator of f can also be expressed explicitly. Therefore, the proximity operators of f and g defined in (5.3)

are both easy to evaluate. As a result, CP and iCP are easy to implement.

5.2. Experimental data. In the first set of experiments, the linear operator A is set to be randomized

partial Walsh-Hadamard transform matrix, whose rows are randomly chosen and columns are randomly

permuted. Therefore, it holds that AA∗ = I. Specifically, the Walsh-Hadamard transform matrix of order

2j is defined recursively as

H20 = [1], H21 =

[
1 1

1 −1

]
, . . . ,H2j =

[
H2j−1 H2j−1

H2j−1 −H2j−1

]
.

It can be shown that H2jH
T
2j = 2jI. In our experiments, the linear operator A contains randomly selected

rows from 2j/2H2j , where 2j/2 is a normalization factor. It is worth pointing out that for some special linear

operators (5.1) (and its denoising variants when the observation data contains noise) can be solved by the

classical ADMM (1.4) without proximal-linearizing any of the subproblems, as long as the constraints are

wisely treated and the finite difference operations are assumed to satisfy appropriate boundary conditions.

In these cases, the y-subproblem can usually be solved by fast transforms, see, e.g., [56, 52, 57]. However, in

our setting, the matrices BTB and A∗A cannot be diagonalized simultaneously, no matter what boundary

conditions are assumed for B. Therefore, when solving (5.1) by the classical ADMM, the y-subproblem is

not easily solvable. In contrast, CP and iCP can be easily implemented to solve (5.1).

We tested 12 images, most of which are obtained from the USC-SIPI image database1. The image sizes

are 256-by-256, 512-by-512 and 1024-by-1024, each of which contains 4 images. The tested images, together

with their names in the database, are given in Figure 5.1.

5.3. Parameters, initialization, stopping rules, etc. The parameters common to CP and iCP

are β and η, for which we used the same set of values. In our experiments, periodic boundary conditions

are assumed for the finite difference operations. It is easy to show that ρ(BTB) = 8. We set β = 5 and

η = 0.125 = 1/ρ(BTB) uniformly for all tests, which may be suboptimal but perform favorably for imaging

1http://sipi.usc.edu/database/
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4.1.03 4.1.05 camera lena

4.2.06 4.2.07 brain elaine

3.2.25 5.3.01 5.3.02 7.2.01

Fig. 5.1. Tested images from the USC-SIPI image database. The image sizes from the first to the third row are 256×256,

512× 512 and 1024× 1024, respectively.

problems with appropriately scaled data. In particular, this setting satisfies the convergence requirement of

both algorithms. The extrapolation parameter αk for iCP was set to be 0.28 and held constant. This value

of αk is determined based on experiences. Note that constant strategy for αk was also used in the recent

work [1], where αk ≡ α ∈ {0, 1/12, 1/6, 1/4, 1/3} were tested for a matrix game problem. We will present

some experimental results to compare the performance of iCP with different constant values of αk. We also

note that some experimental observations are given in [29], indicating that the feasible range of αk may

depend on the relative magnitudes of η and β. Nevertheless, how to select αk adaptively to achieve faster

convergence remains a research issue. Here our main goal is to illustrate the effect of the extrapolation steps.

In our experiments, we initialized y0 = A∗b and p0 = 0 for both algorithms. From [43] and discussions in

Section 2.2, the CP algorithm is an application of PPM to the mixed VI (2.4) with w = (y, p). It is clear

from (2.5) that a solution is already obtained if wk+1 = (yk+1, pk+1) = (yk, pk) = wk. Moreover, it follows

from (4.7) that the feasibility residue is always dominated by ‖wk+1 − w̄k‖G/β. As a result, it is justifiable

to terminate CP by

‖(yk+1, pk+1)− (yk, pk)‖
1 + ‖(yk, pk)‖

< ε, (5.6)
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where ε > 0 is a tolerance parameter, and ‖(y, p)‖ :=
√
‖y‖2 + ‖p‖2. For iCP, the same can be said, except

that (yk, pk) needs to be replaced by (ȳk, p̄k). Thus, we terminated iCP by

‖(yk+1, pk+1)− (ȳk, p̄k)‖
1 + ‖(ȳk, p̄k)‖

< ε. (5.7)

The quantities in (5.6) and (5.7) can be viewed as optimality residues in a relative sense. The tolerance

parameter ε will be specified later. To evaluate the quality of recovered images, we used the signal-to-noise

ratio (SNR), which is defined as

SNR := 20× log10

‖ỹ − y∗‖
‖y − y∗‖

. (5.8)

Here y∗ and y represent the original and the recovered images, and ỹ denotes the mean intensity of y∗.

Note that, for this set of experiment, the constraint Ay = b is always satisfied at each iteration and for all

algorithms. Therefore, we only report the objective function value
∑
i ‖Biy‖, denoted by TV(y), but not

the data fidelity ‖Ay − b‖.

5.4. Reconstruction results from incomplete Walsh-Hadamard coefficients. Recall that the

image is of size n-by-n, and the number of measurements is denoted by q. For each image, we tested four

levels of measurements, that is q/n2 ∈ {20%, 40%, 60%, 80%}. In the experimental results, besides SNR and

objective function value, we also present this feasibility residue, measured by the infinity norm ‖x−By‖∞,

and the number of iterations required by the algorithms (denoted, respectively, by It1 and It2 for CP and

iCP) to meet the condition (5.6) or (5.7). We do not present the CPU time results for comparison because the

per-iteration cost of the algorithms is roughly identical and the consumed CPU time is basically proportional

to the respective number of iterations. Detailed experimental results for ε = 10−2, 10−3 and 10−4 are given

in Tables 5.1–5.3, respectively. Note that in Tables 5.1–5.3 the results for TV(x) and ‖x− By‖∞ are given

in scientific notation, where the first number denotes the significant digit and the second denotes the power.

It can be seen from Tables 5.1–5.3 that, to obtain solutions satisfying the aforementioned conditions,

iCP is generally faster than CP. Specifically, within our setting the numbers of iterations consumed by iCP

range from 70%–80% of those consumed by CP (see the last columns in the tables). In most cases, iCP

obtained results with slightly better final objective function values and feasibility residues. The quality of

recovered images is also slightly better in terms of SNR. By comparing results between different tables, we

see that solutions with high accuracy in optimization point of view generally imply better image quality

measured by SNR. This could imply that solving the problem to a certain high accuracy is in some sense

necessary for better recovery, though the improvement of image quality could be small when the solution is

already very accurate. It can also be observed from the results that both algorithms converge very fast at

the beginning stage and slow down afterwards. In particular, to improve the solution quality by one more

digit of accuracy (measured by optimality residue defined in (5.6)-(5.7)), the number of iterations could be

multiplied by a few times, which is probably a common feature of first-order optimization algorithms. The

fact is that in most cases one does not need to solve imaging problems to extremely high accuracy, because

the recovered results hardly have any difference detectable by human eyes when they are already accurate

enough. For example, for 8-bit images, we only need accuracy up to 3 decimal points. In words, the inertial

technique accelerates the original algorithm to some extent without increasing the total computational cost.

To better visualize the improvement of iCP over CP, we reorganized the results given in Tables 5.1-5.3

and presented them in Figure 5.2. For each measurement level q/n2 and image size n, we accumulated the

number of iterations for different images and took an average. The results for ε = 10−2, 10−3 and 10−4
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Table 5.1

Reconstruction results from incomplete Walsh-Hadamard coefficients with ε = 10−2 (β = 5, η = 0.125, αk ≡ α = 0.28).

CP iCP

q/n2 n image TV(y) ‖x−By‖∞ SNR It1 TV(y) ‖x−By‖∞ SNR It2 It2
It1

20% 256 4.1.03 1.1319 3 7.2942 -3 4.87 65 1.1241 3 4.4170 -3 4.98 50 0.77

4.1.05 1.3151 3 5.8069 -3 3.87 49 1.3069 3 5.8904 -3 3.96 38 0.78

lena 2.1665 3 6.7751 -3 2.60 49 2.1605 3 7.5283 -3 2.63 37 0.76

camera 2.5009 3 8.2455 -3 3.76 55 2.4940 3 4.2202 -3 3.79 41 0.75

512 4.2.06 6.8642 3 5.7185 -3 1.49 41 6.8356 3 5.4164 -3 1.52 32 0.78

4.2.07 6.1689 3 6.1500 -3 1.84 46 6.1445 3 6.1123 -3 1.89 36 0.78

elaine 5.7648 3 7.0215 -3 2.27 47 5.7475 3 7.8325 -3 2.33 37 0.79

brain 3.7925 3 3.3133 -3 5.36 66 3.7599 3 3.3699 -3 5.43 51 0.77

1024 5.3.01 2.6227 4 7.1226 -3 2.29 51 2.6126 4 5.3319 -3 2.31 39 0.76

5.3.02 3.2031 4 6.9707 -3 2.07 44 3.1954 4 5.7347 -3 2.12 35 0.80

3.2.25 2.9271 4 5.7448 -3 2.60 40 2.9168 4 6.6754 -3 2.68 32 0.80

7.2.01 1.5247 4 5.1647 -3 1.79 43 1.5138 4 5.3732 -3 1.84 35 0.81

40% 256 4.1.03 1.3488 3 4.2212 -3 7.86 69 1.3412 3 3.9813 -3 7.99 52 0.75

4.1.05 1.7393 3 6.6140 -3 6.40 47 1.7350 3 9.0815 -3 6.52 37 0.79

lena 2.8201 3 9.1814 -3 4.18 52 2.8181 3 4.7483 -3 4.22 39 0.75

camera 3.1159 3 1.0701 -2 5.66 59 3.1119 3 3.6160 -3 5.69 44 0.75

512 4.2.06 9.6638 3 6.2966 -3 2.82 37 9.6525 3 5.6120 -3 2.87 29 0.78

4.2.07 8.6189 3 8.5462 -3 3.54 42 8.6143 3 7.2810 -3 3.61 33 0.79

elaine 8.0715 3 9.2392 -3 3.15 43 8.0612 3 8.1932 -3 3.19 33 0.77

brain 4.6370 3 9.4767 -3 4.39 65 4.6091 3 4.3974 -3 4.43 50 0.77

1024 5.3.01 3.5028 4 8.1347 -3 3.75 48 3.5008 4 1.0318 -2 3.80 37 0.77

5.3.02 4.4279 4 6.2587 -3 4.22 40 4.4227 4 7.6498 -3 4.27 31 0.78

3.2.25 4.0071 4 5.7304 -3 5.39 38 3.9977 4 6.8326 -3 5.46 29 0.76

7.2.01 2.1930 4 5.9025 -3 3.18 37 2.1870 4 5.7002 -3 3.25 30 0.81

60% 256 4.1.03 1.4182 3 5.5252 -3 13.44 77 1.4100 3 7.2768 -3 13.49 58 0.75

4.1.05 2.0491 3 8.1584 -3 8.57 41 2.0462 3 9.5036 -3 8.72 32 0.78

lena 3.2443 3 9.8217 -3 8.62 50 3.2451 3 1.0342 -2 8.75 38 0.76

camera 3.4820 3 1.2103 -2 7.12 55 3.4808 3 4.9759 -3 7.20 42 0.76

512 4.2.06 1.1612 4 8.1289 -3 4.21 34 1.1603 4 8.5716 -3 4.25 26 0.76

4.2.07 1.0185 4 9.6775 -3 5.66 37 1.0188 4 1.1501 -2 5.75 29 0.78

elaine 9.8019 3 1.0034 -2 7.56 38 9.7987 3 1.0745 -2 7.64 29 0.76

brain 5.0578 3 1.0896 -2 4.15 59 5.0421 3 6.4967 -3 4.22 47 0.80

1024 5.3.01 4.0490 4 1.1646 -2 6.00 43 4.0489 4 1.0927 -2 6.06 33 0.77

5.3.02 5.3012 4 7.7387 -3 8.60 35 5.2984 4 7.6171 -3 8.71 27 0.77

3.2.25 4.7548 4 6.9208 -3 8.00 33 4.7513 4 8.2037 -3 8.15 26 0.79

7.2.01 2.7099 4 7.3859 -3 5.29 32 2.7047 4 7.9069 -3 5.33 25 0.78

80% 256 4.1.03 1.5117 3 1.9780 -2 15.84 47 1.5104 3 1.0129 -2 16.61 39 0.83

4.1.05 2.2963 3 9.2757 -3 11.84 34 2.2947 3 9.0494 -3 12.06 27 0.79

lena 3.4791 3 1.4328 -2 12.92 45 3.4796 3 1.4387 -2 13.11 34 0.76

camera 3.6207 3 1.4613 -2 9.57 48 3.6203 3 1.5002 -2 9.67 38 0.79

512 4.2.06 1.3283 4 9.8529 -3 9.40 27 1.3282 4 1.0326 -2 9.49 21 0.78

4.2.07 1.1962 4 9.9285 -3 6.04 29 1.1967 4 1.0784 -2 6.11 23 0.79

elaine 1.1196 4 1.3529 -2 9.11 31 1.1198 4 1.2973 -2 9.20 24 0.77

brain 5.2027 3 1.3958 -2 14.92 54 5.1933 3 1.2994 -2 15.45 44 0.81

1024 5.3.01 4.4290 4 1.7137 -2 9.40 36 4.4303 4 1.4849 -2 9.48 28 0.78

5.3.02 5.9732 4 9.4555 -3 10.75 28 5.9721 4 9.5126 -3 10.86 22 0.79

3.2.25 5.3345 4 7.3499 -3 12.81 27 5.3338 4 9.4321 -3 13.07 22 0.81

7.2.01 3.1427 4 1.1171 -2 7.20 26 3.1409 4 8.6650 -3 7.27 21 0.81
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Table 5.2

Reconstruction results from incomplete Walsh-Hadamard coefficients with ε = 10−3 (β = 5, η = 0.125, αk ≡ α = 0.28).

CP iCP

q/n2 n image TV(y) ‖x−By‖∞ SNR It1 TV(y) ‖x−By‖∞ SNR It2 It2
It1

20% 256 4.1.03 1.0592 3 9.0554 -4 9.33 329 1.0586 3 7.0139 -4 9.44 243 0.74

4.1.05 1.2514 3 9.8182 -4 6.05 242 1.2508 3 7.4895 -4 6.10 179 0.74

lena 2.0240 3 1.4969 -3 4.43 318 2.0236 3 1.0133 -3 4.44 231 0.73

camera 2.3622 3 1.2124 -3 5.92 330 2.3618 3 8.5057 -4 5.94 241 0.73

512 4.2.06 6.6077 3 1.0215 -3 2.40 217 6.6059 3 8.5628 -4 2.42 160 0.74

4.2.07 5.8261 3 1.7749 -3 3.70 271 5.8246 3 1.7558 -3 3.74 199 0.73

elaine 5.4348 3 1.2689 -3 3.97 267 5.4331 3 1.0330 -3 4.00 196 0.73

brain 3.5531 3 1.4475 -3 8.42 383 3.5509 3 1.0458 -3 8.45 278 0.73

1024 5.3.01 2.4855 4 1.5801 -3 3.69 290 2.4848 4 1.5348 -3 3.71 211 0.73

5.3.02 3.1250 4 1.7648 -3 2.86 195 3.1244 4 1.4521 -3 2.88 145 0.74

3.2.25 2.8511 4 1.5011 -3 3.72 179 2.8501 4 1.2207 -3 3.75 133 0.74

7.2.01 1.4674 4 1.1333 -3 2.83 212 1.4667 4 9.6846 -4 2.87 159 0.75

40% 256 4.1.03 1.2637 3 8.7982 -4 17.13 358 1.2631 3 6.4152 -4 17.18 265 0.74

4.1.05 1.6953 3 1.8062 -3 8.88 197 1.6950 3 1.2055 -3 8.97 147 0.75

lena 2.6837 3 1.3561 -3 6.19 295 2.6835 3 1.0678 -3 6.21 215 0.73

camera 3.0109 3 1.3347 -3 9.22 289 3.0109 3 1.0672 -3 9.28 211 0.73

512 4.2.06 9.4002 3 1.6715 -3 4.16 192 9.3995 3 1.3027 -3 4.18 141 0.73

4.2.07 8.2590 3 1.7877 -3 6.11 242 8.2584 3 1.4797 -3 6.14 177 0.73

elaine 7.7316 3 2.0480 -3 4.97 232 7.7309 3 1.6872 -3 5.00 170 0.73

brain 4.4112 3 2.0597 -3 7.85 332 4.4100 3 1.5813 -3 7.89 242 0.73

1024 5.3.01 3.3361 4 1.9296 -3 6.11 283 3.3359 4 1.8139 -3 6.13 206 0.73

5.3.02 4.3547 4 1.6664 -3 5.44 171 4.3544 4 1.2812 -3 5.47 127 0.74

3.2.25 3.9377 4 1.4296 -3 7.25 159 3.9372 4 1.2021 -3 7.29 118 0.74

7.2.01 2.1404 4 2.1191 -3 4.81 186 2.1401 4 1.6644 -3 4.86 138 0.74

60% 256 4.1.03 1.3827 3 1.5129 -3 21.78 260 1.3826 3 9.4321 -4 22.12 193 0.74

4.1.05 2.0087 3 1.9442 -3 12.48 182 2.0086 3 1.4960 -3 12.58 135 0.74

lena 3.1255 3 1.6699 -3 16.48 283 3.1256 3 1.7352 -3 16.62 207 0.73

camera 3.3504 3 2.4634 -3 14.46 326 3.3498 3 1.7600 -3 14.44 234 0.72

512 4.2.06 1.1364 4 2.4834 -3 5.48 180 1.1364 4 1.9204 -3 5.49 132 0.73

4.2.07 9.8460 3 2.8274 -3 9.07 200 9.8463 3 2.1139 -3 9.13 147 0.73

elaine 9.4950 3 3.1823 -3 10.79 199 9.4948 3 2.4538 -3 10.83 146 0.73

brain 4.8640 3 3.0694 -3 7.05 290 4.8640 3 3.1651 -3 7.11 213 0.73

1024 5.3.01 3.8842 4 4.1921 -3 9.13 273 3.8843 4 2.3870 -3 9.16 199 0.73

5.3.02 5.2337 4 2.2509 -3 11.43 158 5.2337 4 1.7885 -3 11.50 117 0.74

3.2.25 4.7037 4 1.9918 -3 10.37 137 4.7035 4 2.0416 -3 10.43 102 0.74

7.2.01 2.6668 4 2.7801 -3 7.06 159 2.6668 4 2.1974 -3 7.10 118 0.74

80% 256 4.1.03 1.4787 3 1.2684 -3 29.97 217 1.4785 3 1.6997 -3 29.34 162 0.75

4.1.05 2.2664 3 2.9759 -3 19.08 171 2.2664 3 2.3118 -3 19.17 123 0.72

lena 3.3928 3 2.5510 -3 22.10 229 3.3928 3 2.0750 -3 22.12 167 0.73

camera 3.5637 3 6.0327 -3 13.63 211 3.5642 3 3.4959 -3 13.77 156 0.74

512 4.2.06 1.3092 4 3.4162 -3 12.37 143 1.3093 4 3.3944 -3 12.42 105 0.73

4.2.07 1.1693 4 5.4809 -3 9.34 163 1.1693 4 4.2707 -3 9.38 119 0.73

elaine 1.0980 4 4.2817 -3 12.57 159 1.0980 4 3.3699 -3 12.61 116 0.73

brain 5.0233 3 1.5505 -3 34.64 275 5.0219 3 1.5675 -3 34.09 206 0.75

1024 5.3.01 4.3206 4 5.4126 -3 13.58 205 4.3207 4 4.3222 -3 13.61 149 0.73

5.3.02 5.9350 4 4.1668 -3 13.04 120 5.9350 4 3.1152 -3 13.07 88 0.73

3.2.25 5.3086 4 2.9624 -3 15.55 103 5.3086 4 2.0553 -3 15.64 77 0.75

7.2.01 3.1127 4 5.8998 -3 8.74 128 3.1129 4 4.5796 -3 8.77 95 0.74
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Table 5.3

Reconstruction results from incomplete Walsh-Hadamard coefficients with ε = 10−4 (β = 5, η = 0.125, αk ≡ α = 0.28).

CP iCP

q/n2 n image TV(y) ‖x−By‖∞ SNR It1 TV(y) ‖x−By‖∞ SNR It2 It2
It1

20% 256 4.1.03 1.0529 3 1.4547 -4 11.76 1241 1.0528 3 1.0827 -4 11.79 908 0.73

4.1.05 1.2450 3 1.7284 -4 6.75 953 1.2449 3 1.1230 -4 6.75 694 0.73

lena 2.0075 3 1.8010 -4 5.30 1272 2.0074 3 1.3062 -4 5.31 920 0.72

camera 2.3487 3 2.2856 -4 7.17 1277 2.3486 3 1.6444 -4 7.18 924 0.72

512 4.2.06 6.5656 3 2.1007 -4 3.57 1016 6.5654 3 1.5352 -4 3.58 737 0.73

4.2.07 5.7503 3 2.2159 -4 7.05 1595 5.7500 3 1.9751 -4 7.06 1146 0.72

elaine 5.3811 3 1.8871 -4 5.78 1250 5.3809 3 1.5154 -4 5.79 905 0.72

brain 3.5307 3 1.8038 -4 10.45 1379 3.5305 3 1.4380 -4 10.48 1007 0.73

1024 5.3.01 2.4471 4 2.6258 -4 6.80 1873 2.4470 4 1.9095 -4 6.81 1350 0.72

5.3.02 3.1125 4 1.9095 -4 3.74 926 3.1124 4 1.4926 -4 3.75 672 0.73

3.2.25 2.8419 4 2.1814 -4 4.33 726 2.8418 4 1.6618 -4 4.34 531 0.73

7.2.01 1.4567 4 2.6271 -4 5.21 1209 1.4567 4 1.8932 -4 5.24 881 0.73

40% 256 4.1.03 1.2613 3 1.4225 -4 18.57 866 1.2613 3 9.7930 -5 18.63 659 0.76

4.1.05 1.6906 3 2.1066 -4 10.92 689 1.6905 3 1.7779 -4 10.96 505 0.73

lena 2.6725 3 1.9869 -4 7.18 956 2.6725 3 1.6135 -4 7.19 692 0.72

camera 2.9844 3 1.8506 -4 15.42 1382 2.9843 3 1.3780 -4 15.44 1001 0.72

512 4.2.06 9.3340 3 2.5729 -4 6.54 1022 9.3339 3 1.9041 -4 6.56 741 0.73

4.2.07 8.1870 3 2.0627 -4 10.52 1179 8.1870 3 1.5139 -4 10.56 855 0.73

elaine 7.6796 3 2.9240 -4 7.09 1015 7.6795 3 2.2082 -4 7.10 736 0.73

brain 4.3411 3 1.8608 -4 18.22 1774 4.3409 3 1.3406 -4 18.31 1293 0.73

1024 5.3.01 3.2940 4 3.0227 -4 10.09 1463 3.2940 4 2.2911 -4 10.11 1059 0.72

5.3.02 4.3426 4 3.0691 -4 6.76 735 4.3425 4 2.3810 -4 6.78 535 0.73

3.2.25 3.9299 4 2.8261 -4 8.27 587 3.9298 4 2.2508 -4 8.29 431 0.73

7.2.01 2.1271 4 2.8676 -4 7.44 1043 2.1271 4 2.3184 -4 7.46 761 0.73

60% 256 4.1.03 1.3813 3 2.1023 -4 23.71 651 1.3812 3 1.4074 -4 23.75 494 0.76

4.1.05 2.0061 3 2.7249 -4 14.10 508 2.0061 3 1.9179 -4 14.15 377 0.74

lena 3.1180 3 3.0073 -4 17.80 828 3.1180 3 2.3795 -4 17.78 601 0.73

camera 3.3238 3 2.9028 -4 20.34 1126 3.3237 3 2.3618 -4 20.29 820 0.73

512 4.2.06 1.1338 4 3.0901 -4 6.75 582 1.1338 4 2.4203 -4 6.77 424 0.73

4.2.07 9.7655 3 3.8127 -4 16.08 998 9.7655 3 3.0599 -4 16.12 725 0.73

elaine 9.4659 3 4.3193 -4 13.04 679 9.4659 3 3.0643 -4 13.06 496 0.73

brain 4.7679 3 2.9519 -4 23.57 1747 4.7678 3 2.4006 -4 23.81 1278 0.73

1024 5.3.01 3.8615 4 8.4962 -4 12.40 1018 3.8615 4 6.0623 -4 12.43 739 0.73

5.3.02 5.2243 4 6.5600 -4 12.61 608 5.2243 4 4.5762 -4 12.60 444 0.73

3.2.25 4.6980 4 4.5021 -4 11.83 484 4.6980 4 3.5987 -4 11.85 356 0.74

7.2.01 2.6581 4 4.1830 -4 8.96 731 2.6581 4 3.0788 -4 8.98 536 0.73

80% 256 4.1.03 1.4781 3 2.4197 -4 30.76 419 1.4781 3 1.7573 -4 30.80 327 0.78

4.1.05 2.2649 3 3.8634 -4 20.65 425 2.2649 3 3.6174 -4 20.66 314 0.74

lena 3.3916 3 3.4517 -4 22.44 447 3.3916 3 4.2157 -4 22.44 331 0.74

camera 3.5313 3 3.3864 -4 27.10 970 3.5312 3 2.7673 -4 26.92 707 0.73

512 4.2.06 1.3069 4 5.8567 -4 14.79 519 1.3069 4 4.1928 -4 14.82 380 0.73

4.2.07 1.1585 4 1.1237 -3 20.78 918 1.1586 4 8.7215 -4 20.86 666 0.73

elaine 1.0928 4 1.0021 -3 19.55 826 1.0928 4 7.3748 -4 19.57 600 0.73

brain 5.0193 3 1.6601 -4 35.21 689 5.0192 3 1.4387 -4 35.21 549 0.80

1024 5.3.01 4.2953 4 9.6281 -4 22.98 986 4.2953 4 7.7170 -4 23.03 717 0.73

5.3.02 5.9293 4 7.7142 -4 15.46 452 5.9293 4 5.5496 -4 15.50 331 0.73

3.2.25 5.3062 4 8.1420 -4 16.79 336 5.3062 4 5.9169 -4 16.81 249 0.74

7.2.01 3.1059 4 6.7967 -4 9.43 558 3.1059 4 5.4514 -4 9.43 409 0.73
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are given in Figure 5.2. By comparing the three plots in Figure 5.2, we see that the number of iterations

increased from a few dozens to around one thousand when the accuracy tolerance ε was decreased from 10−2

to 10−4. From the results we can also observe that, on average, both algorithms are stable in the sense that

the consumed number of iterations do not vary much for different image sizes.
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Fig. 5.2. Comparison results of CP and iCP on different image sizes and stopping tolerance (n = 256, 512, 1024, and

from left to right ε = 10−2, 10−3, 10−4, respectively).

We also examined the performance of iCP with different constant strategies of the inertial extrapolation

stepsize αk. In particular, for n = 1024 we tested αk ≡ α ∈ {0.05, 0.15, 0.25, 0.35}. The results are given in

Figure 5.3. It can be seen from the results that, for the four tested α values, larger ones generally give better

performance. Recall that, according to our analysis, iCP is guaranteed to converge under the condition

0 ≤ αk ≤ αk+1 ≤ α < 1/3 for all k. Indeed, we have observed that iCP either slows down or becomes

unstable for large values of α, say, larger than 0.3, especially when the number of measurements is relatively

small. This is the main reason that we set αk a constant value that is near 0.3 but not larger. Similar

discussions for compressive principal component pursuit problems can be found in [2].
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Fig. 5.3. Comparison results of iCP on different αk ≡ α and stopping tolerance (α ∈ {0.05, 0.15, 0.25, 0.35}, and from

left to right ε = 10−2, 10−3, 10−4, respectively).

5.5. Image reconstruction from incomplete wavelet coefficients. Image reconstruction from

incomplete wavelet coefficients is also known as wavelet domain inpainting. Given a set of randomly selected

wavelet coefficients f = PWy∗ + ω ∈ <q, where y∗ ∈ <n2

denotes the original image, W is an orthonormal

wavelet transform, P represents a selection operator which contains q randomly selected rows of the identity

matrix of size n2, and ω contains additive Gaussian noise. In this section, we keep all the notation defined in

Section 5.1. In particular, the finite difference operators and the notation defined in (5.2) remain effective.
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The TV model to reconstruct y∗ from f is

min
y

∑n2

i=1
‖Biy‖+

µ

2
‖PWy − f‖2, (5.9)

where µ > 0 is a weighting parameter dependent on the noise level. By introducing auxiliary variables, (5.9)

can be equivalently transformed to

min
x,y,z

{∑n2

i=1
‖xi‖+

µ

2
‖Pz − f‖2 : s.t. −

(
x

z

)
+

(
B

W

)
y = 0

}
, (5.10)

which is clearly in the form of (1.2). When solving (5.10) by the classical ADMM (1.4), both subproblems

can be solved exactly via either shrinkage operators or fast Fourier and/or wavelet transforms due to the

special structures of the underlying functions and linear operators, as long as periodic boundary conditions

are assumed for B, see, e.g., [58]. Denote the dual variable of (5.10) by p. According to (2.5) and (2.6) (note

that both S and T are zero matrices in this case), an optimal solution is already obtained if (yk+1, pk+1) =

(yk, pk) (resp. (yk+1, pk+1) = (ȳk, p̄k)) for ADMM (resp. iADMM). Therefore, similar as in the first set

of experiments, we terminated ADMM and iADMM by (5.6) and (5.7), respectively, where the tolerance

parameter ε was set to be 10−3. The parameters β and αk remain the same values as used in Section 5.3,

i.e., β = 5 and αk ≡ α = 0.28. The variables y and p are initialized at A∗b and 0, respectively, for both

algorithms. In our experiments, we used the Haar wavelet transform provided by the Rice Wavelet Toolbox

[59] with its default settings. The noise ω was random Gaussian with mean zero and standard deviation

10−3. The weighting parameter µ was set to be 103. Recall that the number of measurements is q and the

sample ratio is q/n2. Detailed experimental results for q/n2 ∈ {20%, 40%, 60%, 80%} are reported in Table

5.4 for the set of images in Figure 5.1, where the final values of objective function (Obj), SNR and the

number of iterations (denoted by It1 and It2 for ADMM and iADMM, respectively) are given.

Roughly speaking, similar conclusion as given in Section 5.4 can be drawn from the results in Table

5.4, i.e., to obtain solutions of approximately the same accuracy, iADMM is generally faster than ADMM.

Specifically, to obtain solutions with approximately the same SNR values, the number of iterations consumed

by iADMM is on average about 80% of that consumed by ADMM. The final objective function values obtained

by iADMM are also slightly better in most cases. For different constant values of α, the results are similar

to those presented in Figure 5.3. Thus, the detailed results are omitted here.

Note that (5.9) is an unconstrained optimization, and it is thus appropriate to compare different op-

timization algorithms by examining the evolution behavior of objective function values and SNR values as

the iteration/CPU time proceeds. In this experiment, besides the results of ADMM and iADMM, we also

present those of CP and iCP. First, by introducing auxiliary variable x only, we can transform (5.9) to

min
x,y

{∑n2

i=1
‖xi‖+

µ

2
‖PWy − f‖2 : s.t. − x+By = 0

}
. (5.11)

Let f(x) =
∑n2

i=1 ‖xi‖ and g(y) = µ
2 ‖PWy − f‖2. Then, the CP algorithm (2.7) can be applied. By the

orthonormality of W , it is easy to show that, for any γ > 0, the proximity operator of g is given by

proxgγ(y) = WT (γµPTP + I)−1(γµPT f +Wy), ∀y ∈ <n
2

.

Since P contains certain rows of the identity matrix, PTP is a diagonal matrix and the cost to evaluate

(γµPTP + I)−1 is negligible. As a result, the main cost for computing proxgγ(y) is two fast Wavelet trans-

forms. In this experiment, the parameter η in (2.7) was set to be 0.124, which guarantees convergence since
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Table 5.4

Reconstruction results from incomplete wavelet coefficients (ε = 10−3, β = 5, αk ≡ α = 0.28).

ADMM iADMM

q/n2 n image Obj SNR It1 Obj SNR It2 It2
It1

20% 256 4.1.03 6.7480 2 4.22 214 6.7033 2 4.23 176 0.82

4.1.05 1.0252 3 5.05 160 1.0245 3 5.05 118 0.74

lena 1.6258 3 5.56 148 1.6254 3 5.56 107 0.72

camera 1.6459 3 7.17 176 1.6448 3 7.17 130 0.74

512 4.2.06 5.5076 3 6.65 151 5.5061 3 6.64 110 0.73

4.2.07 4.8557 3 7.11 147 4.8515 3 7.09 107 0.73

elaine 4.7290 3 6.89 149 4.7263 3 6.89 108 0.72

brain 2.1597 3 7.64 148 2.1618 3 7.64 112 0.76

1024 5.3.01 1.9263 4 8.46 139 1.9270 4 8.46 101 0.73

5.3.02 2.5287 4 4.05 129 2.5281 4 4.05 93 0.72

3.2.25 2.2791 4 2.85 140 2.2781 4 2.85 101 0.72

7.2.01 1.1828 4 8.17 146 1.1829 4 8.17 110 0.75

40% 256 4.1.03 9.8197 2 7.37 146 9.7438 2 7.35 113 0.77

4.1.05 1.5226 3 7.98 103 1.5210 3 8.03 79 0.77

lena 2.3489 3 9.58 89 2.3481 3 9.58 66 0.74

camera 2.4159 3 10.57 115 2.4156 3 10.58 91 0.79

512 4.2.06 8.5346 3 9.37 92 8.5299 3 9.37 69 0.75

4.2.07 7.3840 3 10.66 91 7.3807 3 10.66 69 0.76

elaine 7.1243 3 10.43 99 7.1194 3 10.43 73 0.74

brain 3.1941 3 10.17 108 3.1916 3 10.16 83 0.77

1024 5.3.01 2.8631 4 11.75 91 2.8627 4 11.76 68 0.75

5.3.02 3.8727 4 6.46 82 3.8725 4 6.47 61 0.74

3.2.25 3.4924 4 5.73 87 3.4913 4 5.74 64 0.74

7.2.01 1.8953 4 10.95 100 1.8953 4 10.94 77 0.77

60% 256 4.1.03 1.2102 3 12.46 110 1.1945 3 12.32 86 0.78

4.1.05 1.8575 3 11.07 79 1.8575 3 11.07 63 0.80

lena 2.8393 3 12.42 71 2.8381 3 12.45 55 0.77

camera 2.9276 3 13.71 82 2.9273 3 13.70 69 0.84

512 4.2.06 1.0813 4 11.69 69 1.0807 4 11.71 55 0.80

4.2.07 9.3606 3 13.53 71 9.3508 3 13.56 54 0.76

elaine 8.9962 3 13.91 72 8.9959 3 13.94 56 0.78

brain 3.9928 3 13.88 81 3.9899 3 13.87 71 0.88

1024 5.3.01 3.5350 4 14.75 67 3.5342 4 14.76 52 0.78

5.3.02 4.8778 4 9.36 63 4.8769 4 9.36 48 0.76

3.2.25 4.3767 4 8.72 65 4.3744 4 8.72 49 0.75

7.2.01 2.4526 4 13.40 79 2.4516 4 13.39 64 0.81

80% 256 4.1.03 1.3674 3 18.20 81 1.3589 3 18.03 68 0.84

4.1.05 2.1786 3 15.29 54 2.1752 3 15.25 43 0.80

lena 3.2458 3 18.06 52 3.2414 3 18.14 44 0.85

camera 3.2936 3 18.57 68 3.2876 3 18.52 54 0.79

512 4.2.06 1.2629 4 15.69 56 1.2615 4 15.71 47 0.84

4.2.07 1.1066 4 17.93 53 1.1052 4 18.03 44 0.83

elaine 1.0568 4 18.02 52 1.0567 4 18.07 43 0.83

brain 4.5818 3 18.57 64 4.5763 3 18.55 50 0.78

1024 5.3.01 4.0889 4 18.75 52 4.0867 4 18.75 42 0.81

5.3.02 5.6924 4 12.91 51 5.6913 4 12.91 41 0.80

3.2.25 5.0931 4 12.43 51 5.0929 4 12.49 41 0.80

7.2.01 2.9298 4 16.82 62 2.9260 4 16.82 53 0.85
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ρ(BTB) = 8. All other parameters remain the same as prescribed in Section 5.3. To better understanding

the average performance of different algorithms, we tested all the 12 images given in Figure 5.1, ran each

algorithm for 500 iterations, and took an average on the results. The performance of ADMM, iADMM,

CP and iCP are given in Figure 5.4, where the evolution results of objective function values with respect

to iteration and CPU time are presented. Besides, the evolution results of SNR values and the relative

difference ‖wk+1 − w̄k‖/(1 + ‖w̄k‖) (ADMM and CP correspond to αk ≡ 0 and thus w̄k = wk) with respect

to iteration are also given.

It is easy to observe from these results that CP and iCP are faster than ADMM and iADMM only at

the beginning by very few (roughly, less than 20) iterations and fall behind very quickly. After about 100

iterations, CP and iCP catch up with ADMM and iADMM gradually. A plausible explanation for the faster

speed to ADMM and iADMM compared to CP and iCP is that, due to the data structure, ADMM/iADMM

can solve each subproblem exactly, while CP/iCP approximates one subproblem via proximal-linearization.

Another observation is that inertial algorithms are generally faster than their corresponding original algo-

rithms in both decreasing the objective function values and increasing the SNR values, which can be seen

from the first and the fourth plots, respectively. The faster speed of inertial algorithms in decreasing function

values is presented in an alternative way in the second plot, where the ratios of function values attained by

inertial algorithms divided by those attained by their corresponding original algorithms are plotted as the

iteration proceeds. It can be seen that the ratios are mostly less than 1, especially in the first few dozens

of iterations. This observation may suggest that inertial algorithms are more advantageous to attain low to

medium accuracy solutions. The results of function values versus CPU time in the third plot appear roughly

the same with those for function values versus iteration. This is predictable since the extra computations

in inertial algorithms are not significant. It is also apparent from the first four plots that all the compared

algorithms obtained solutions of approximately the same accuracy measured by objective function values

and SNR. The last plot in Figure 5.4 demonstrates how the relative difference ‖wk+1 − w̄k‖/(1 + ‖w̄k‖)
decreases with respect to iteration. It can be seen that ‖wk+1 − w̄k‖/(1 + ‖w̄k‖) decreases smoothly for all

the tested algorithms and decreases faster for inertial algorithms than the corresponding original ones. This

also justifies the suitability of the stopping criteria (5.6) and (5.7).

6. Concluding remarks. In this paper, by combining the inertial techniques and the proximal AD-

MM, we proposed and analyzed a class of inertial proximal ADMMs, which unify and extend two existing

algorithms [1, Algorithm 3] and [2, Eq. (3.23)]. This class of methods are of inertial nature because at each

iteration the proximal ADMM is applied to a point extrapolated at the current iterate in the direction of

last movement. Under very mild assumptions, we established the global iterate convergence for the entire

class of algorithms. Compared to existing methods of the same kind, we only require the weighting matrices

to be positive semidefinite, but not positive definite. In particular, by setting both weighting matrices to be

zero, we obtained an inertial ADMM. In comparison to the recently proposed inertial ADMM in [34], our

proposed algorithm framework is not only more simple and intuitive but also more general. Moreover, the

conditions imposed by us to guarantee global convergence are simpler than those assumed in [34]. Based

on the pioneering analysis in [18] and by using the structures of (1.1) and the iterative scheme (3.1), we

established certain asymptotic o(1/
√
k) and nonasymptotic O(1/

√
k) convergence rate results on the best

primal objective and feasibility residues. Our preliminary implementation of the algorithms and extensive

experimental results on TV based image reconstruction problems have shown that inertial algorithms are

generally faster than the corresponding original ones. Note that, compared to the original algorithms, the

corresponding inertial ones do not require much extra computational cost except the linear cost to obtain
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Fig. 5.4. From top-left to bottom-right in Figure 5.4, the plots are, respectively, objective function values versus iteration,

the ratios of function values attained by inertial algorithms divided by those attained by their corresponding original algorithms

versus iteration, objective function values versus CPU time (in seconds), SNR values (in dB) versus iteration, and relative

difference ‖wk+1 − w̄k‖/(1 + ‖w̄k‖) versus iteration.
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the inertial variable w̄k. Admittedly, inertial algorithms need to store one more variable, i.e., w̄k, at each

step, which could be costly for large scale problems.

We emphasize that our main contributions are the proposition of a class of inertial proximal ADMMs and

their convergence analysis. Compared to the accelerated methods [48, 60, 37] which guarantee convergence in

function values, our iterate convergence results are stronger at the cost of more restrictive inertial step sizes.

In our experiments, the extrapolation steplength αk was set to be constant. How to select αk adaptively

such that the overall performance is stable and more efficient deserves further investigation. Though some

experimental observations on the dependence of the feasible range of αk and the relative magnitudes of η and

β have been observed in [29], theoretical explanations and deep insights are undoubtedly desired. Moreover,

the requirement that {αk}∞k=0 is nondecreasing seems not reasonable either. Interesting topics for future

research may include relaxing the conditions on {αk}∞k=0, improving the convergence results and proposing

modified inertial type algorithms so that the extrapolation stepsize can be significantly enlarged.
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dualité, d’une classe de problèmes de Dirichlet non linéaires,” R.A.I.R.O., R2, vol. 9, no. R-2, pp. 41–76, 1975.

[14] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approx-

imation,” Computers and Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976.

[15] J. Eckstein, “Some saddle-function splitting methods for convex programming,” Optimization Methods and Software,

vol. 4, no. 1, pp. 75–83, 1994.

[16] H. Attouch and F. Alvarez, “The heavy ball with friction dynamical system for convex constrained minimization problems,”

in Optimization (Namur, 1998), ser. Lecture Notes in Econom. and Math. Systems. Springer, Berlin, 2000, vol. 481,

pp. 25–35.

[17] F. Alvarez, “On the minimizing property of a second order dissipative system in Hilbert spaces,” SIAM J. Control Optim.,

vol. 38, no. 4, pp. 1102–1119 (electronic), 2000.

[18] F. Alvarez and H. Attouch, “An inertial proximal method for maximal monotone operators via discretization of a nonlinear

oscillator with damping,” Set-Valued Anal., vol. 9, no. 1-2, pp. 3–11, 2001, wellposedness in optimization and related

topics (Gargnano, 1999).

[19] M. R. Hestenes, “Multiplier and gradient methods,” J. Optimization Theory Appl., vol. 4, pp. 303–320, 1969.

[20] M. J. D. Powell, “A method for nonlinear constraints in minimization problems,” in Optimization (Sympos., Univ. Keele,

Keele, 1968). London: Academic Press, 1969, pp. 283–298.
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