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x� Introduction�

Preconditioned conjugate gradient methods have been used e�ciently in solving large

matrix problems� The idea of using the method with circulant preconditioners for solving

symmetric positive de	nite Toeplitz systems Tnx � b was proposed by Strang ���� and

Olkin ���� independently� The number of operations per iteration is of O�n logn� as

circulant systems can be solved e�ciently by fast Fourier transform �FFT� and the matrix�

vector multiplication Tnv can also be computed by the FFT by 	rst embedding Tn into a

�n�by��n circulant matrix� The convergence rate of the preconditioned conjugate gradient

method depends on the whole spectrum of the preconditioned matrix� In general
 the

more clustered the eigenvalues are
 the faster the convergence rate will be�

There are many circulant preconditioners that can produce clustered spectra
 see

Chan and Yeung ���� One good example is T� Chan�s ��� circulant preconditioner which is

de	ned to be the minimizer of kTn � CnkF in Frobenius norm over all circulant matrices

Cn� One can consider this circulant preconditioner from the operator point of view� Given

any arbitrary n�by�n matrix An
 we de	ne an operator cF which maps An to the matrix

cF �An� that minimizes kAn�CnkF over all circulant matrices Cn� This circulant operator

cF has been studied in Chan
 Jin and Yeung ����

In this paper
 we generalize the idea to the case of block matrices� Our interest is

in solving systems Tmnx � b where Tmn is an m�by�m block matrix with n�by�n Toeplitz

blocks� This kind of systems occur in a variety of applications
 such as the two�dimensional

digital signal processing and the discretization of two�dimensional partial di�erential equa�

tions� Given such Tmn
 we can use the mn�by�mn point�circulant matrix cF �Tmn� as a

circulant approximation to Tmn
 see T� Chan and Olkin ��� and Chan and T� Chan ����

In this paper
 however
 we consider another approximation to Tmn that preserves the

block structure� The approximation is an extending to the one proposed by T� Chan

and Olkin ���� We de	ne the matrix c
���
F �Tmn� to be the minimizer of kTmn � CmnkF

over all m�by�m block matrices Cmn with n�by�n circulant blocks� We will show that the
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operator c
���
F is well�de	ned for all mn�by�mn complex matrices Amn� Some properties

of c
���
F are then discussed� In particular
 we prove that if Amn is positive de	nite
 then

c
���
F �Amn� is also positive de	nite� We also show that the operator c

���
F has operator norms

jjc
���
F jj� � jjc

���
F jjF � ��

We then consider the cost of using the preconditioned conjugate gradient method

with the preconditioner c
���
F �Amn� for solving block systems Amnx � b� The convergence

rate of the method is then analyzed for two speci	c types of block systems� The 	rst one

is the quadrantally symmetric block Toeplitz systems� We show that in this case
 if the

generating sequence of the matrices is absolutely summable
 then the method converges

in at most O�minfm�ng� steps� Next we consider block matrices that are of the form

Am�Tn where Am is nonsingular and Tn is a Toeplitz matrix with a positive ���periodic

continuous generating function� We show that the resulting preconditioned system has

spectrum clustered around � and hence the method converges superlinearly� Our numerical

experiments have shown that c
���
F �Amn� is indeed a good preconditioner for solving these

block systems � the number of iterations is roughly a constant in both cases�

The outline of the paper is as follows� In x�
 we 	rst recall some properties of the point�

circulant operator cF � Then we introduce three di�erent possible block preconditioners

that preserve the block structure of the given matrix� In x�
 we consider the cost of using

c
���
F �Amn� as a preconditioner for solving block systems Amnx � b� The convergence rate

of the method is analysed in x� and numerical results are then given in x��

x� Operators for Block Matrices�

Let us begin by introducing the operator for point matrices� Given an n�by�n unitary

matrix U 
 let

MU � fU��nU j �n is an n�by�n complex diagonal matrixg�

where ��� denotes the conjugate transposition� We note that when U is equal to the
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Fourier matrix F 
 MF is the set of all circulant matrices
 see Davis ����� Let ��An�

denote the diagonal matrix whose diagonal is equal to the diagonal of the matrix An� The

following Lemma was 	rst proved by Chan
 Jin and Yeung ��� for the case U � F and was

extended to the general unitary case by Huckle �����

Lemma �� Let An be an arbitrary n�by�n matrix and cU �An� be the minimizer of

kWn �AnkF over all Wn �MU � Then

�i� cU �An� is uniquely determined by An and is given by

cU �An� � U���UAnU
��U � ���

�ii� If An is Hermitian� then so is cU �An�� Furthermore� if �min��� and �max��� denote

the largest and the smallest eigenvalues respectively� then we have

�min�An� � �min

�
cU �An�

�
� �max

�
cU �An�

�
� �max�An� �

In particular� if An is positive de�nite� then cU �An� is also positive de�nite�

�iii� The operator cU is a linear projection operator from the set of all n�by�n complex

matrices into MU and has the operator norms

jjcU jj� � sup
jjAnjj���

jjcU �An�jj� � �

and

jjcU jjF � sup
jjAnjjF��

jjcU �An�jjF � ��

�iv� When U is the n�by�n Fourier matrix F �

cF �An� �

n��X
j��

�
�

n

X
p�q�j �mod n�

apq�Q
j � ���

where Q is the n�by�n circulant matrix

Q �

�
������

 �
� 

 �
� � �

���
� � �

� � �

 � 

�
������ � ���
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The circulant matrix cF �An�
 	rst proposed by T� Chan ���
 is a good preconditioner

for solving some Toeplitz systems by the preconditioned conjugate gradient method
 see

Chan ���� In the following
 we call cU the point�operator in order to distinguish it from

the block�operators that we now introduce�

x��� Block�Operator c
���
U �

Let us now consider a general system Amnx � b where Amn is an mn�by�mn matrix

partitioned as

Amn �

�
���
A��� A��� � � � A��m

A��� A��� � � � A��m

���
� � �

� � �
���

Am�� Am�� � � � Am�m

�
��� � ���

Here the blocks Ai�j are square matrices of order n� We emphasize that we are interested

in solving block systems where the blocks Ai�j are Toeplitz matrices� In view of the point

case
 a natural choice of preconditioner for Amn is

Emn �

�
���
cF �A���� cF �A���� � � � cF �A��m�
cF �A���� cF �A���� � � � cF �A��m�

���
� � �

� � �
���

cF �Am��� cF �Am��� � � � cF �Am�m�

�
��� �

where the blocks cF �Ai�j� are just the point�circulant approximations to Ai�j
 see ���� We

will show in x� and x� that Emn is a good preconditioner for solving some block systems�

In the following
 however
 we 	rst study some of the spectral properties of the matrix

Emn�

Let �����Amn� be de	ned by

�����Amn� �

�
���
��A���� ��A���� � � � ��A��m�
��A���� ��A���� � � � ��A��m�
���

� � �
� � �

���
��Am��� ��Am��� � � � ��Am�m�

�
��� � ���

where each block ��Ai�j� is the diagonal matrix of order n whose diagonal is equal to the

diagonal of the matrix Ai�j � The following Lemma gives the relation between �max�Amn�

and �max

�
�����Amn�

�
where �max��� denotes the largest singular value�
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Lemma �� Given any mn�by�mn complex matrix Amn partitioned as in ���� we have

�max

�
�����Amn�

�
� �max�Amn�� ���

Furthermore� when Amn is Hermitian� we have

�min�Amn� � �min

�
�����Amn�

�
� �max

�
�����Amn�

�
� �max�Amn� � ���

In particular� if Amn is positive de�nite� then �����Amn� is also positive de�nite�

Proof� Let �Amn�i�j�k�l � �Ak�l�ij be the �i� j�th entry of the �k� l�th block of Amn� Let P

be the permutation matrix that satis	es

�P �AmnP �k�l�i�j � �Amn�i�j�k�l� � � i� j � n� � � k� l � m� ���

Then it is easy to see that Bmn � P ������Amn�P is of the form

Bmn �

�
���
B���  � � � 
 B��� � � � 
���

� � �
� � �

���
  � � � Bn�n

�
��� �

Clearly the matrices Bmn and �
����Amn� have the same singular values and eigenvalues�

For each k
 since Bk�k is a principal submatrix of the matrix Amn
 it follows that

�max�Bk�k� � �max�Amn��

see for instance
 Thompson ����� Hence we have

�max

�
�����Amn�

�
� �max�Bmn� � max

k

�
�max�Bk�k�

�
� �max�Amn� �

When Amn is Hermitian
 by Cauchy�s Interlace Theorem
 see Golub and van Loan ����


we then have

�min�Amn� �min
k

�
�min�Bk�k�

�
� �min

�
�����Amn�

�
��max

�
�����Amn�

�
� max

k

�
�max�Bk�k�

�
� �max�Amn� �
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In the following
 we use D
���
m�n to denote the set of all m�by�m block matrices where

each block is a complex diagonal matrix of order n
 i�e� D
���
m�n is the set of all matrices of

the form given by ���� Let

M
���
U � f�I � U������mn�I � U� j ����mn � D

���
m�ng �

where I is the m�by�m identity matrix and U is any given n�by�n unitary matrix� We

then de	ne the operator c
���
U to be the mapping that maps every mn�by�mn matrix Amn

to the minimizer of kWmn �AmnkF over all Wmn �M
���
U � Some of the properties of this

operator are given in the following Theorem�

Theorem �� For any arbitrary mn�by�mn complex matrix Amn partitioned as in ���� let

c
���
U �Amn� be the minimizer of kWmn �AmnkF over all Wmn �M

���
U � Then

�i� c
���
U �Amn� is uniquely determined by Amn and is given by

c
���
U �Amn� � �I � U������

	
�I � U�Amn�I � U��



�I � U�� ���

�ii� c
���
U �Amn� is also given by

c
���
U �Amn� �

�
���
cU �A���� cU �A���� � � � cU �A��m�
cU �A���� cU �A���� � � � cU �A��m�

���
� � �

� � �
���

cU �Am��� cU �Am��� � � � cU �Am�m�

�
��� � ���

where cU is the point�operator de�ned by �	��

�iii� We have

�max

�
c
���
U �Amn�

�
� �max�Amn�� ����

�iv� If Amn is Hermitian� then c
���
U �Amn� is also Hermitian and

�min�Amn� � �min

�
c
���
U �Amn�

�
� �max

�
c
���
U �Amn�

�
� �max�Amn� �

In particular� if Amn is positive de�nite� then c
���
U �Amn� is also positive de�nite�

�v� The operator c
���
U is a linear projection operator from the set of all mn�by�mn complex

matrices into M
���
U and has the operator norms

kc
���
U k� � sup

kAmnk���
kc

���
U �Amn�k� � �
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and

kc
���
U kF � sup

kAmnkF��
kc

���
U �Amn�kF � ��

Proof�

�i� Let Wmn �M
���
U be given by

Wmn � �I � U������mn�I � U� �

where �
���
mn � D

���
m�n� Since the Frobenius norm is unitary invariant
 we have

kWmn �AmnkF �k�I � U������mn�I � U��AmnkF

�k����mn � �I � U�Amn�I � U��kF �

Thus the problem of minimizing kWmn � AmnkF over M
���
U is equivalent to the

problem of minimizing k�
���
mn � �I � U�Amn�I � U��kF over D

���
m�n� Since �

���
mn can

only a�ect the diagonal of each block of �I�U�Amn�I�U��
 we see that the solution

for the latter problem is �
���
mn � ����

	
�I � U�Amn�I � U��



� Hence

c
���
U �Amn� � �I � U������

	
�I � U�Amn�I � U��



�I � U�

is the minimizer of kWmn � AmnkF � It is clear that �
���
mn and hence c

���
U �Amn� are

uniquely determined by Amn�

�ii� Since

����
	
�I � U�Amn�I � U��



�

�
���
��UA���U

�� ��UA���U
�� � � � ��UA��mU

��
��UA���U

�� ��UA���U
�� � � � ��UA��mU

��
���

� � �
� � �

���
��UAm��U

�� ��UAm��U
�� � � � ��UAm�mU

��

�
��� �

by ��� and ���
 we see that c
���
U �Amn� is also given by ����

�iii� For general mn�by�mn matrix Amn
 we have by ��� and ���

�max

�
c
���
U �Amn�

�
��max

	
����

�
�I � U�Amn�I � U��

�

��max

	
�I � U�Amn�I � U��



� �max�Amn� �
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�iv� If Amn is Hermitian
 then it is clear from ��� and Lemma � �ii� that c
���
U �Amn� is

also Hermitian� Moreover
 by ��� and ���
 we have

�min�Amn� ��min

	
�I � U�Amn�I � U��



��min

	
����

�
�I � U�Amn�I � U��

�

��min

�
c
���
U �Amn�

�
� �max

�
c
���
U �Amn�

�
��max

	
����

�
�I � U�Amn�I � U��

�

��max

	
�I � U�Amn�I � U��



� �max�Amn� �

�v� By ����
 we have

kc
���
U �Amn�k� � �max�c

���
U �Amn�� � �max�Amn� � kAmnk��

However
 for themn�by�mn identity matrix Imn
 we have kc
���
U �Imn�k� � kImnk� � ��

Hence kc
���
U k� � �� For the Frobenius norm
 we also have

kc
���
U �Amn�kF � k����

	
�I � U�Amn�I � U��



kF

� k�I � U�Amn�I � U��kF � kAmnkF �

Since kc
���
U � �p

mn
Imn�kF �

�p
mn

kImnkF � �
 it follows that kc
���
U kF � ��

x��� Block�Operator �c
���
V �

For matrices Amn partitioned as in ���
 we can de	ne another block approximation

to them� Let ������Amn� be de	ned by

������Amn� �

�
���
A���  � � � 
 A��� � � � 
���

� � �
� � �

���
  � � � Am�m

�
��� � ����

In the following
 we use �D
���
m�n to denote the set of all m�by�m block diagonal matrices

where each block is a complex matrix of order n
 i�e� �D
���
m�n is the set of all matrices of the

form given by ����� Let

�M
���
V � f�V � I�� �����mn�V � I� j �����mn �

�D���
m�ng �
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where V is any given m�by�m unitary matrix and I is the n�by�n identity matrix�

We de	ne the operator �c
���
V to be the mapping that maps every mn�by�mn matrix

Amn to the minimizer of kWmn � AmnkF over all Wmn � �M
���
V � Similar to Theorem �


we have the following Theorem�

Theorem �� For any arbitrary mn�by�mn complex matrix Amn partitioned as in ���� let

�c
���
V �Amn� be the minimizer of kWmn �AmnkF over all Wmn � �M

���
V � Then

�i� �c
���
V �Amn� is uniquely determined by Amn and is given by

�c
���
V �Amn� � �V � I�������

	
�V � I�Amn�V � I��



�V � I�� ����

�ii� We have

�max

�
�c
���
V �Amn�

�
� �max�Amn��

�iii� If Amn is Hermitian� then �c
���
V �Amn� is also Hermitian and

�min�Amn� � �min

�
�c
���
V �Amn�

�
� �max

�
�c
���
V �Amn�

�
� �max�Amn� �

In particular� if Amn is positive de�nite� then �c
���
V �Amn� is also positive de�nite�

�iv� The operator �c
���
V is a linear projection operator from the set of all mn�by�mn complex

matrices into �M
���
V and has the operator norms

k�c
���
V k� � k�c

���
V kF � ��

The proof of the Theorem is quite similar to that of Theorem �
 we therefore omit

it� We note however that Theorem � �ii���iv� can be proved easily by using the following

relationship between c
���
U and �c

���
V �

Lemma 	� Let U be any given unitary matrix and P be the permutation matrix de�ned

in �
�� Then for any arbitrary mn�by�mn complex matrix Amn partitioned as in ���� we

have

�����Amn� � P ������P �AmnP �P
�
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and

c
���
U �Amn� � P �c

���
U �P

�AmnP �P
��

Proof� To prove the 	rst equality
 we note that by the de	nition of ����� and ���
 we have

�������P �AmnP ��k�l�i�j �

�
�P �AmnP �k�l�i�j i � j �

 i 	� j �

�

�
�Amn�i�j�k�l i � j �

 i 	� j �

Hence

�P ������P �AmnP �P
��i�j�k�l � �������P �AmnP ��k�l�i�j �

�
�Amn�i�j�k�l i � j �

 i 	� j �

which by de	nition is equal to ������Amn��i�j�k�l�

To prove the second equality
 we 	rst note that

�I � U�P � P �U � I�

for any matrix U � Hence by ���� and ���
 we have

P �c
���
U �P

�AmnP �P
� � P �U � I���������U � I�P �AmnP �U � I����U � I�P �

� �I � U��P ������P ��I � U�Amn�I � U��P �P ��I � U�

� �I � U��������I � U�Amn�I � U����I � U� � c
���
U �Amn��

x��	 Operator c
���
V�U �

Intuitively
 c
���
U �Amn� and �c

���
V �Amn� resemble the diagonalization of Amn along one

speci	c direction� It is then natural to consider the matrix that results from diagonalization

along both directions� Thus let c
���
V�U denote the composite of the two operators
 i�e�

c
���
V�U � �c

���
V 
 c

���
U � The following Lemma will be used to derive the properties of the

operator c
���
V�U �
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Lemma 
� For any given Amn partitioned as in ���� we have

�I � U��������Amn��I � U� � �������I � U��Amn�I � U�� � ����

and

�V � I������Amn��V � I�� � ������V � I�Amn�V � I��� � ����

Furthermore�

����� 
 �����Amn� � ��Amn� � ���� 
 ������Amn� � ����

The proof of Lemma � is straightforward
 we therefore omit it� By using Lemma �
 we

can prove the following Theorem which states that the operator c
���
V�U is just a particular

case of the point�operator�

Theorem 	� For any given Amn partitioned as in ���� we have

c
���
V�U �Amn� � cV�U �Amn� �

where cV�U is the point�operator de�ned in Lemma 	�

Proof� For any given Amn
 by de	nitions of c
���
U and �c

���
V 
 we have

c
���
V�U�Amn�

��c
���
V �c

���
U �Amn��

��V � I�������
�
�V � I�

	
�I � U��������I � U�Amn�I � U����I � U�



�V � I��


�V � I�

��V � I�������
�
�I � U���V � I�������I � U�Amn�I � U����V � I���I � U�


�V � I��

Hence by ����
 ���� and ����
 we have

c
���
V�U �Amn� ��V � U�������

�
�������V � U�Amn�V � U���


�V � U�

��V � U�����V � U�Amn�V � U����V � U� � cV�U �Amn� �

Since c
���
V�U is just another point�operator
 we therefore will concentrate our discussion

on c
���
U and �c

���
V in the remaining of the paper� We remark that c

���
V�U�Amn� is an approx�

imation of Amn in two directions whereas c
���
U �Amn� and �c

���
V �Amn� are approximations
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in one direction only �with the other direction being approximated exactly�� Thus we

expect that the c
���
U �Amn� and �c

���
V �Amn� are better preconditioners than c

���
V�U�Amn�� This

is con	rmed by the numerical results in x��

We now give two simple formula for 	nding c
���
U �Amn� and �c

���
V �Amn� in the case where

U and V are just the Fourier matrix F � When U � F 
 we have by ���


c
���
F �Amn� �

�
���
cF �A���� cF �A���� � � � cF �A��m�
cF �A���� cF �A���� � � � cF �A��m�

���
� � �

� � �
���

cF �Am��� cF �Am��� � � � cF �Am�m�

�
��� � ����

where each block cF �Ai�j� is T� Chan�s circulant preconditioner for Ai�j �

Next we 	nd �c
���
F �Amn� by using Lemma �� We 	rst let Amn � P �BmnP and partition

Bmn into n
� blocks with each block Bi�j an m�by�m matrix� Then by Lemma � and ����


we have

��c
���
F �Amn��i�j�k�l � �P

�c���F �Bmn�P �i�j�k�l � �c
���
F �Bmn��k�l�i�j � �cF �Bi�j��kl�

where Bi�j is the �i� j�th block of the matrix Bmn� By ���
 we see that the �k� l�th entry

of the circulant matrix cF �Bi�j� is given by

�cF �Bi�j��kl �
�

m

X
p�q�k�l �mod m�

�Bi�j�pq �

Since �Bi�j�pq � �Ap�q�ij 
 we have

��c
���
F �Amn��i�j�k�l �

�

m

X
p�q�k�l �mod m�

�Ap�q�ij � � � i� j � n� � � k� l � m�

Thus the �k� l�th block of �c
���
F �Amn� is given by

�
m

P
p�q�k�l �mod m��Apq�� Since it de�

pends only on k � l �mod m�
 we see that �c
���
F �Amn� is a block circulant matrix� Using

the de	nition of the matrix Q in ���
 we further have

�c
���
F �Amn� �

�

m

m��X
j��

�Qj �
X

p�q�j �mod m�

Ap�q� �
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x	 Block Preconditioners for Block Systems�

In this section
 we consider the cost of solving block systems Amnx � b by the

preconditioned conjugate gradient method with preconditioner c
���
F �Amn�� The analysis for

�c
���
F �Amn� is similar� We 	rst recall that in each iteration of the preconditioned conjugate

gradient method
 we have to compute the matrix�vector multiplication Amnv for some

vector v and solve the system

c
���
F �Amn�y � d � ����

for some vector d
 see Golub and van Loan �����

x	�� General Matrices�

Let Amn be a general mn�by�mn matrix� We note that by ���
 the solution to ���� is

given by

y � �I � F ��
	
����

�
�I � F �Amn�I � F ��

�
��
�I � F �d � ����

Hence before we start the iteration
 we should form the matrix

� � ����
�
�I � F �Amn�I � F ��

�

and compute its inverse� We note that by ����
 the �i� j�th block of � is just FcF �Ai�j�F
��

By ���
 FcF �Ai�j�F
� � ��FAi�jF

�� and hence can be computed in n� operations and one

FFT
 see Chan
 Jin and Yeung ���� Thus the cost of obtaining � is O�m�n�� operations�

Next we compute its inverse�

We 	rst permute the matrix � by P to obtain

Bmn � P ��P �

�
���
B���  � � � 
 B��� � � � 
���

� � �
� � �

���
  � � � Bn�n

�
��� �

We then compute the LU decompositions for all diagonal blocks Bk�k� That will take

O�nm�� operations� Totally
 it requires O�n�m� � nm�� operations in the initialization

step�



A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS ��

After obtaining the LU factors of �
 we start the iteration� For a general dense matrix

Amn
 Amnv can be computed in O�n
�m��� To get the vector y in ����
 we note that by

using the FFT
 vectors of the form �I � F �d can be computed in O�mn logn� operations�

Using the LU factors of �
 O�nm�� operations are need to compute ���d for any vector

d� Totally
 the cost per iteration is O�mn logn� �O�nm�� operations�

Thus the algorithm for solving system Amnx � b for general matrix Amn requires

O�n�m��nm�� operations in the initialization step and O�n�m�� operations per iteration�

Clearly if Amn is sparse
 the cost can be reduced� We will consider
 in the next two

subsections
 two types of block systems where the cost can be drastically reduced�

Finally
 we note that some of the block operations mentioned above can be done

parallelly� For instance
 the diagonal ��FAi�jF
�� of the blocks cF �Ai�j� can be obtained in

O�n�� parallel steps with O�m�� processors and the LU decompositions of the blocks Bkk

in Bmn can also be computed in parallel� This can further reduce the cost per iteration�

x	�� Quadrantally Symmetric Block Toeplitz Matrices�

Let us consider the family of block Toeplitz systems Tmnx � b where Tmn is of the

form

Tmn �

�
���
T��� T��� � � � T��m
T��� T��� � � � T��m
���

� � �
� � �

���
Tm�� Tm�� � � � Tm�m

�
��� �

�
����

T��� T��� � � � T�m���
T��� T��� � � � T�m���
���

� � �
� � �

���
T�m��� T�m��� � � � T���

�
���� � ���

Here the blocks Ti�j � T�ji�jj� are themselves symmetric Toeplitz matrices of order n�

Such Tmn are called quadrantally symmetric block Toeplitz matrices�

By ����
 the blocks of c
���
F �Tmn� are just cF �T�k��� Hence by ��� and the fact that T�k�

is Toeplitz
 the diagonal ��FT�k�F
�� can be computed in O�n logn� operations� Therefore


we need O�mn logn� operations to form � � ����
�
�I � F �Tmn�I � F ��

�
� We emphasize

that in this case
 there is no need to compute the LU factors of �� In fact


P ��P �

�
����
�T���  � � � 

 �T��� � � � 
���

� � �
� � �

���
  � � � �Tn�n

�
���� �



�� A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS

where

� �Tk�k�ij �
�
��FTi�jF

��
�
kk
�
�
��FT�ji�jj�F ��

�
kk
� � � i� j � m� � � k � n�

Hence we see that the diagonal blocks �Tk�k are still symmetric Toeplitz matrices of order

m� Therefore it requires only O�m log�m� operations to compute �T��k�kv for any vector v


see Ammar and Gragg ���� Thus the system c
���
F �Tmn�y � d can be solved in O�nm log�m�

operations�

Next we consider the cost of the matrix�vector multiplication Tmnv� We recall that

for any Toeplitz matrix T�k�
 the matrix vector multiplication T�k�w can be computed

by the FFT by 	rst embedding T�k�w into a �n�by��n circulant matrix and extending

w to a �n�vector by zeros� For the matrix�vector product Tmnv
 we can use the same

trick� We 	rst embed Tmn into a �blockwise� �m�by��m block circulant matrix where

each block itself is a �n�by��n circulant matrix� Then we extend v to a �mn�vector by

putting zeros in the appropriate places� Using FFT
 or more precisely using �F�m � F�n�

to diagonalize the �m�by��m block circulant matrix
 we see that Tmnv can be obtained in

O�mn�logm� logn�� operations�

Thus we conclude that the initialization cost in this case is O�mn logn� and the cost

per iteration is O�nm log�m �mn logn�� We emphasize that if m � n
 then one should

consider using �c
���
F �Amn� as preconditioner instead�

x	�	 Separable Matrices�

Consider the following system �Am �Bn�x � b where Am is an m�by�m nonsingular

matrix and Bn is an n�by�n Hermitian positive de	nite matrix� This system arises in

solving the inverse heat problem in ��D
 see Chan ���� Since �����Am�Bn� � Am���Bn�


it follows that

c
���
F �Am �Bn� � Am � cF �Bn��

Thus the preconditioned system becomes

�Am � cF �Bn��
���Am �Bn�x � �Am � cF �Bn��

��b�
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or

�I � cF �Bn�
��Bn�x � �A

��
m � c��F �Bn��b�

For general Bn
 cF �Bn� can be obtained in O�n
�� operations and cF �Bn�

��y can be

obtained in O�n logn� operations for any vector y� By decomposing Am into its LU factors

	rst
 we can then generate the new right hand side vector

�A��m � c��F �Bn��b � �A
��
m � I��I � c��F �Bn��b

in O�m��m�n�mn logn�n�� operations� In each subsequent iteration
 the matrix�vector

multiplication �I � cF �Bn�
��Bn�v can be done in O�mn logn�mn�� operations�

When Bn is a Hermitian positive de	nite Toeplitz matrix
 cF �Bn� can be obtained

in O�n� operation� Hence the initialization cost reduced to O�m� � m�n � mn logn��

Moreover
 since the cost of multiplying Bny becomes O�n logn�
 we see that the cost per

iteration decreases to O�mn log n��

x
 Convergence Rate�

In this section
 we analyze the convergence rate of the preconditioned conjugate gra�

dient method when applied to solving some special block systems�

x
�� Quadrantally Symmetric Block Toeplitz Matrices�

Let us consider the system Tmnx � b where Tmn is a quadrantally symmetric block

Toeplitz matrix given by ���� Let the entries of the block T�j� be denoted by t
�j�
pq � t

�j�
jp�qj


for � � p� q � n�  � j 	 m� We assume that the generating sequence t
�j�
k of Tmn is

absolutely summable
 i�e�
�X
j��

�X
k��

jt
�j�
i j � K 	� �

In order to analyze the distribution of the eigenvalues of Tmn� c
���
F �Tmn�
 we need to

introduce Strang�s circulant preconditioner� For each T�j�
 Strang�s preconditioner sF �T�j��

is de	ned to be the circulant matrix obtained by copying the central diagonals of T�j� and
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bringing them around to complete the circulant� More precisely
 the entries s
�j�
pq � s

�j�
jp�qj

of sF �T�j�� are given by

s
�j�
k �

�
t
�j�
k  � k � r�

t
�j�
n�r r � k 	 n�

����

Here for simplicity
 we have assumed that n � �r� De	ne

s
���
F �Tmn� �

�
����

sF �T���� sF �T���� � � � sF �T�m����
sF �T���� sF �T���� � � � sF �T�m����

���
� � �

� � �
���

sF �T�m���� sF �T�m���� � � � sF �T����

�
���� � ����

We prove below that the matrices c
���
F �Tmn� and s

���
F �Tmn� are asymptotically the same�

Lemma �� Let Tmn be given by ���� with an absolutely summable generating sequence�

Then for all m � �

lim
n��

ks
���
F �Tmn�� c

���
F �Tmn�k� �  �

Proof� Let Bmn � s
���
F �Tmn� � c

���
F �Tmn�� By ���� and ����
 we see that the block B�j�

of Bmn are given by sF �T�j�� � cF �T�j��� Hence by ��� and ���� they are circulant with

entries b
�j�
pq � b

�j�
jp�qj given by

b
�j�
k �

���
��

k

n
�t
�j�
k � t

�j�
n�k�  � k � r�

n� k

n
�t
�j�
n�k � t

�j�
k � r � k 	 n�

Thus

kBmnk� � �

m��X
j��

kB�j�k� � �

m��X
j��

n��X
k��

jb
�j�
k j � �

m��X
j��

rX
k��

k

n
jt
�j�
k j� �

m��X
j��

n��X
k�r	�

jt
�j�
k j�

For all 
 � 
 since the generating sequence is absolutely summable
 we can always 	nd

an N� �  and an N� � �N�
 such that

�X
j��

�X
k�N�

jt
�j�
k j 	 
 and

�

N�

�X
j��

N�X
k��

kjt
�j�
k j 	 
�

Thus for all n � N�


kBmnk� �
�

N�

�X
j��

N�X
k��

kjt
�j�
k j� �

�X
j��

rX
k�N�	�

jt
�j�
k j� �

�X
j��

�X
k�r	�

jt
�j�
k j 	 ��
 �
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In view of Lemma � and the following equality

Tmn � c
���
F �Tmn� �

�
s
���
F �Tmn�� c

���
F �Tmn�

�
�
�
Tmn � s

���
F �Tmn�

�
�

we see that the spectra of Tmn � c
���
F �Tmn� and Tmn � s

���
F �Tmn� are asymptotically the

same� However
 it is easier to obtain spectral information about the second matrix as the

following Lemma shows�

Lemma �� Let Tmn be given by ���� with an absolutely summable generating sequence�

Then for all 
 � � there exists an N� � � such that for all n � N� and for all m � �

s
���
F �Tmn�� Tmn �W �N��

mn � U �N��
mn �

where kW
�N��
mn k� � 
 and rank�U

�N��
mn � � �N�m�

Proof� De	ne Wmn � s
���
F �Tmn� � Tmn� It is clear from ���� that its blocks W�j� �

sF �T�j��� T�j� are symmetric Toeplitz matrices with entries w
�j�
pq � w

�j�
jp�qj given by

w
�j�
k �

�
  � k � r �

t
�j�
n�k � t

�j�
k r 	 k 	 n �

For all 
 � 
 since the generating sequence is absolutely summable
 there exists an N� � 


such that
P�

j��

P�
k�N�

jt
�j�
k j 	 
� Corresponding to thisN�
 we de	ne
 for each blockW�j�


the n�by�n matrix

W
�N��
�j� �

�
�W�j� 
 

�
�

where �W�j� is the �n � N���by��n � N�� principal submatrix of W�j�� Clearly
 each �W�j�

is a Toeplitz matrix� Let U
�N��
�j� � W�j� �W

�N��
�j� for all j� We note that U

�N��
�j� is nonzero

only in the last N� rows and N� columns
 therefore rank�U
�N��
�j� � � �N��

Let

W �N��
mn �

�
�����
W

�N��
��� W

�N��
��� � � � W

�N��
�m���

W
�N��
��� W

�N��
��� � � � W

�N��
�m���

���
� � �

� � �
���

W
�N��
�m��� W

�N��
�m��� � � � W

�N��
���

�
����� � ����
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and

U �N��
mn �

�
�����
U
�N��
��� U

�N��
��� � � � U

�N��
�m���

U
�N��
��� U

�N��
��� � � � U

�N��
�m���

���
� � �

� � �
���

U
�N��
�m��� U

�N��
�m��� � � � U

�N��
���

�
����� �

Then s
���
F �Tmn� � Tmn � W

�N��
mn � U

�N��
mn � Since each block U

�N��
�j� in U

�N��
mn is an n�by�n

matrix where the leading �n�N���by��n�N�� principal submatrix is a zero matrix
 it is

easy to see that rank�U
�N��
mn � � �N�m � O�m�� For W

�N��
mn 
 we have by ����

kW �N��
mn k� � �

m��X
j��

kW
�N��
�j� k� � �

m��X
j��

k �W�j�k�

� �

m��X
j��

n�N���X
k�r	�

jw
�j�
k j � �

m��X
j��

n�N���X
k�r	�

jt
�j�
n�k � t

�j�
k j

� �
m��X
j��

n�N���X
k�N�	�

jt
�j�
k j � �

�X
j��

�X
k�N�

jt
�j�
k j 	 �
 �

Let N � maxfN�� N�g
 where N� and N� are given in the proofs of Lemmas � and ��

Then for all n � N and m � 
 we have

Tmn � c
���
F �Tmn� �Mmn � LO�m� �

where Mmn � s
���
F �Tmn� � c

���
F �Tmn� �W

�N�
mn with kMmnk� 	 
 and LO�m� � U

�N�
mn with

rank �LO�m�� � O�m�� Since Mmn is symmetric
 we have

kMmnk� � �kMmnk�kMmnk��
�

� � kMmnk� 	 
 �

By using Cauchy�s Interlace Theorem
 we then have the following Theorem�

Theorem 
� Let Tmn be given by ���� with an absolutely summable generating sequence�

Then for all 
 � � there exists an N �  such that for all n � N and all m � � at most

O�m� eigenvalues of c
���
F �Tmn�� Tmn have absolute values exceeding 
�

If Tmn is positive de	nite with the smallest eigenvalue �min�Tmn� � � � 
 where �

is independent of m and n
 then by Theorem � �iv�
 �min

�
c
���
F �Tmn�

�
� � � � Hence

k
�
c
���
F �Tmn�

���
k� is uniformly bounded� By noting that

�
c
���
F �Tmn�

���
Tmn � I �

�
c
���
F �Tmn�

����
c
���
F �Tmn�� Tmn

�
�

we then have the following immediate Corollary�
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Corollary �� Let Tmn be given by ���� with an absolutely summable generating sequence�

If Tmn are positive de�nite for all m and n and that �min�Tmn� � � � � then for all 
 � �

there exists an N � � such that for all n � N and all m � � at most O�m� eigenvalues

of
�
c
���
F �Tmn�

���
Tmn � I have absolute value large than 
�

As a consequence
 the spectrum of
�
c
���
F �Tmn�

���
Tmn is clustered around � except for

at most O�m� outlying eigenvalues� When the preconditioned conjugate gradient method

is applied to solving the system Tmnx � b
 Corollary � shows that the number of iterations

will grow at most like O�m�� We recall that in x���
 the algorithm requires O�mn logn� op�

erations in the initialization step and O�mn log�m�mn log n� operations in each iteration�

Thus the total complexity of the algorithm is bounded above by O�m�n log�m�m�n logn��

We emphasize that for the quadrantally symmetric block Toeplitz systems we tested

in x�
 the number of iterations is independent of m and n and the complexity of the

method is therefore of O�nm log�m� nm logn��

We remark again that when m � n
 one should consider using the preconditioner

�c
���
F �Tmn� instead� Then by repeating the whole argument we used
 we can show that

the preconditioned conjugate gradient method will converge in at most O�n� steps for m

su�ciently large� Hence the total complexity of the algorithm in this case is bounded

above by O�n�m log� n� n�m logm��

Before we close this subsection
 we would like to point out that for quadrantally

symmetric block Toeplitz matrix Tmn
 we can de	ne
 analogous to �c
���
V �Tmn�
 the matrix

�s
���
F �Tmn� as follows�

�s
���
F �Tmn� � P �s���F �PTmnP

��P�

where P is de	ned by ���� Then as in x���
 we can further de	ne the doubly circulant block

preconditioner �s
���
F 
s

���
F �Tmn�� As remarked after the proof of Theorem �
 �s

���
F 
s

���
F �Tmn� is

the approximation of Tmn in two directions� Therefore it will not be a good preconditioner

compared to either s
���
F �Tmn� or
 in view of Lemma �
 to c

���
F �Tmn�� We 	nally remark that

if instead of Strang�s circulant preconditioner
 R� Chan�s preconditioner ��� is used in ����
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then the corresponding doubly circulant block preconditioner is the block preconditioner

considered in Ku and Kuo �����

x
�� Separable Matrices�

Next we consider the system �Am � Tn�x � b where Tn is a Toeplitz matrix with

generating function f 
 i�e� the diagonals of Tn are given by the Fourier coe�cients aj�f�

of f � More precisely
 we have

�Tn�jk � aj�k�f�� j� k � �� �� � � � �

We assume that f is positive
 ���periodic and continuous and denote Tn by Tn�f�� For

such Tn�f�
 we have the following result
 see Chan and Yeung ����

Lemma � Let f be a positive� ���periodic and continuous function� Then for all � � �

there exist N and M � � such that for all n � N � at most M eigenvalues of the matrices

c��F
�
Tn�f�

�
Tn�f�� In have absolute values large than ��

Since the preconditioned matrix is given by

	
Am � cF

�
Tn�f�

�
���
Am � Tn�f�

�
� Im �

	
c��F

�
Tn�f�

�
Tn�f�



�

it is clear that the number of distinct eigenvalues of the preconditioned matrix is the same

as the number of distinct eigenvalues of c��F
�
Tn�f�

�
Tn�f�� In view of Lemma �
 we then

see that for all � � 
 there exist N 
 M � 
 such that for all n � N and all m � 
 at

most M distinct eigenvalues of the matrices
�
Im�

	
c��F

�
Tn�f�

�
Tn�f�



� I have absolute

values large than �� Thus the eigenvalues of the preconditioned matrix is clustered around

� and hence the number of iterations required for convergence is a constant independent

of n and m� Recalling the operation count in x���
 the total complexity of the algorithm

in this case is equal to O�m� � nm� �mn logn��

x� Numerical Results�

In this section
 we apply the preconditioned conjugate gradient method to the block

systems we considered in x�� The stopping criteria for the method is set at krkk�kr�k� 	 �
�
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where rk is the residual vector at the kth iteration� The right hand side vector b is chosen

to be the vector of all ones and the zero vector is the initial guess�

x��� Quadrantally Symmetric Block Toeplitz Matrices�

We consider Tmn of the form given in ��� with the diagonals of the blocks T�j� being

given by t
�j�
i � Four di�erent generating sequences were tested� They are

�i� t
�j�
i �

�

�j � ���jij � ���	�����j	��
� j � � i � ����� � � � �

�ii� t
�j�
i �

�

�j � ������jij� ���	�����j	��
� j � � i � ����� � � � �

�iii� t
�j�
i �

�

�j � ����� � �jij� �����
� j � � i � ����� � � � �

�iv� t
�j�
i �

�

�j � ����� � �jij� �����
� j � � i � ����� � � � �

The generating sequences �ii� and �iv� are absolutely summable while �i� and �iii� are not�

Tables � and � show the number of iterations required for convergence� In all cases
 we see

that as m � n increases
 the number of iterations remains roughly a constant or increases

very slowly for the preconditioned system with preconditioner c
���
F �Tmn� while it increases

with other choices of preconditioners�

Sequence �i� Sequence �ii�

n � m mn None c
���
F �Tmn� c

���
F�F �Tmn� None c

���
F �Tmn� c

���
F�F �Tmn�

� �� � � �� �� � ��
�� ��� �� � �� �� � ��
�� ��� �� � �� �� � �
�� ��� �� � �� �� � ��
��� ����� �� � �� � � ��

Table �� Preconditioners Used and the Number of Iterations

Sequence �iii� Sequence �iv�

n � m mn None c
���
F �Tmn� c

���
F�F �Tmn� None c

���
F �Tmn� c

���
F�F �Tmn�

� �� �� � �� �� � ��
�� ��� � � � �� � �
�� ��� �� � �� � � ��
�� ��� �� �� � �� � ��
��� ����� ��� �� ��� �� � ��
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Table �� Preconditioners Used and the Number of Iterations

x��� Separable Matrices�

We consider the separable block Toeplitz system � �Tm�Tn�x � b where the diagonals

of �Tm and Tn are given by �ti � �jij � ��
�� and tj � �jjj � ��

���� respectively for i� j �

����� � � � � We note that �Tm � Tn is also a quadrantally symmetric block Toeplitz

matrix with the generating sequence given by

t
�i�
j �

�

�i� ���jjj � �����
� i � � j � ����� � � � �

The preconditioner c
���
F �

�Tm � Tn� is given by �Tm � cF �Tn�� Table � shows the number

of iterations required for convergence� We notice that as n � m increases
 the number

of iterations stays almost the same for the preconditioned system with preconditioner

c
���
F �

�Tm � Tn� while it increases with other choices of preconditioners� We remark that

since �Tm is a Toeplitz matrix
 its inverse can be obtained in O�m log
�m�� Hence the total

complexity of the algorithm is reduced to O�mn log�m�mn logn��

n � m mn None cF � �TmTm�� cF �Tn� �Tm � In �Tm � cF �Tn�
� �� � � � �
�� ��� �� � � �
�� ��� �� � �� �
�� ��� �� � �� �
��� ����� �� �� � �

Table �� Preconditioners Used and the Number of Iterations
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