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Abstract

In this paper, we consider solving potential equations by the boundary integral equation
approach. The equations so derived are Fredholm integral equations of the first kind and
are known to be ill-conditioned. Their discretized matrices are dense and have condition
numbers growing like O(n) where n is the matrix size. We propose to solve the equations by
the preconditioned conjugate gradient method with circulant integral operators as precon-
ditioners. These are convolution operators with periodic kernels and hence can be inverted
efficiently by using fast Fourier transforms. We prove that the preconditioned systems are
well-conditioned, and hence the convergence rate of the method is linear. Numerical results
for two types of regions are given to illustrate the fast convergence.
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1 Introduction

In this paper, we study the solution of the potential equation

Aw(r) =0, z€Q,
{ w(z) =g(z), =€ 0, (1)

where 99 is a smooth closed curve in R? and Q is either the bounded interior region with
boundary 99 or the unbounded exterior region with boundary 9€2. In the boundary integral
equation approach, see for instance Chen and Zhou [9, §6.12], the harmonic function w(zx) is
represented as a single-layer potential generated by a source distribution o(z) over 92, with the
potential satisfying the boundary condition g(xz) prescribed for w(x). More precisely, we write

1
w(z) = ~5- - log |z — y|o(y)dS, + 1, z € (2)

where Sy, is the arc length variable corresponding to y and 7 is a constant to be determined.
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The limit of (2), as z is taken to 0f2, gives the integral equation on the boundary:

1
o(z) = ——/ log |z — ylo(y)dS, +n, = € I 3)
27'(' o0

We will see in §2 that o(y) and 1 can be obtained by solving the boundary integral equations

—% o log |z — yloi(y)dSy = gi(x), x € 09, i=1,2, (4)
for o1(y) and o9(y) with g;(xz) = g(z) and go(x) = 1. Once o(y) and n are obtained, values of
w(z) in Q can be computed from (2).

The well-known advantage of the boundary integral equation approach is that the dimension
of the problem is reduced by one. The discrete matrix A,, associated with the integral equation
(4) is only of size n-by-n for mesh size proportional to 1/n. In contrast, the discrete matrix for
the partial differential equation (1) will be of size n?-by-n?. However, the major drawback of
the approach is that A, is a dense matrix. Hence solving the problem with a direct method
will require O(n?®) operations which will be too expensive for practical, large scale numerical
computations.

If an iterative method, such as the conjugate gradient method (see Golub and van Loan [11,
p.524]) is used, then the cost per iteration is dominated by the cost of multiplying A,, to a vector
say x. This in general requires O(n?) operations. For some special boundaries 9, the product
A,x may be obtained fast. As an example, if 9€2 is an ellipse, A,, will be a circulant-plus-Hankel
matrix and A,x can be computed in O(nlogn) operations, see Example 1 in §5. In general, we
can use fast multiplication schemes [1, 6, 12] to reduce the cost of multiplication to O(nlogn)
operations depending on the smoothness of the boundary.

Another difficulty for the boundary integral equation (4) is that it is a Fredholm equation
of the first kind with a weakly singular kernel, see Kress [15, p.270]. The matrix A, therefore
is known to be ill-conditioned. In §2, we will see that the condition number of A, increases
like O(n). Therefore if the system is solved by the conjugate gradient method, the number of
iterations required for convergence will be increasing like O(n'/?), see Golub and van Loan [11,
Theorem 10.2.5] and also the numerical results in §5.

One standard way to speed up the convergence rate in the conjugate gradient method is to
apply a preconditioner and then solve the preconditioned system, see Golub and van Loan [11,
p.529]. Gohberg, Hanke and Koltracht in [10] have considered using circulant integral operators
to precondition Wiener-Hopf integral equations of the second kind defined on [0, 00). Circulant
integral operators are convolution operators with periodic kernels. Their inverses (both for the
continuous operators and for the discretized matrices) can be obtained efficiently using Fourier
transforms. For Wiener-Hopf equations of the second kind on [0, c0), which are convolution-type,
well-conditioned integral equations, Gohberg et. al. showed in [10] that with preconditioning,
the convergence rate can be increased from linear to superlinear.

In this paper, we will consider the use of circulant integral operators as preconditioners for
integral equations of the first kind as given in (4). Our integral equations are not of convolution-
type and are ill-conditioned. We will show that the preconditioned systems will become well-
conditioned and therefore the convergence rate is linear. In particular, the number of iterations
required for convergence is reduced from O(n!/?) to O(1) if our proposed preconditioner is used.

We remark that the discretization matrices of circulant integral operators using the rectan-
gular quadrature rule are circulant matrices, see for instance Chan, Jin and Ng [4]. Circulant



matrices have been proposed and used as preconditioners for Toeplitz matrices in the past
ten years, see the survey paper by Chan and Ng [7] and the references therein. It is estab-
lished theoretically that the circulant-preconditioned systems converge superlinearly when the
given Toeplitz system is well-conditioned, see for instance Chan and Strang [8]. However, the
performance of circulant preconditioners for ill-conditioned Toeplitz systems is not good in gen-
eral and in fact circulant preconditioners fail in some cases, see Chan [3]. For these systems,
band-Toeplitz type preconditioners have been proven to make the ill-conditioned problems well-
conditioned, see for instance [3]. We emphasize that in this paper, the discrete matrices A, we
considered are ill-conditioned and are not Toeplitz matrices. But our results imply that they
can be preconditioned by circulant matrices to obtain well-conditioned systems.

One kind of circulant preconditioner that has been investigated extensively in the study
of preconditioners for Toeplitz matrices is the optimal circulant preconditioner proposed by T.
Chan in [2]. It can be defined for arbitrary matrices. T. Chan’s idea of constructing optimal
circulant preconditioners has been incorporated in Gohberg, Hanke and Koltracht [10] in de-
veloping optimal circulant integral operators for convolution-type integral operators. Chan and
Lin [5] later extended the idea to develop optimal circulant integral operators for general non-
convolution type integral operators. In this paper, we will concentrate on the use of optimal
circulant integral operators for (4).

The outline of the paper is as follows. In §2, we show the equivalence of the equations (3)
and (4) and give some properties of (4). In particular, we note that the discretized systems of
(4) will be ill-conditioned. In §3, we introduce the optimal circulant integral operator for (4) and
study some properties of its associated bilinear form. In §4 we show that the condition numbers
of the discretized circulant-preconditioned systems are uniformly bounded independent of the
size of the systems. Numerical results for two types of domains are given in §5 to illustrate the
fast convergence of our method and some concluding remarks are given in §6.

2 The Boundary Integral Operator

In this section, we review some basic results of boundary integral equations and of the boundary
integral operators they induce. In particular, we show that the density function o(y) in (3) can
be obtained by solving o1 (y) and o3(y) in (4) and that the boundary integral operator induced
by (4) is ill-conditioned. These results are well-known but we recall them here for completeness.

We first note that, besides (3), the density function o(y) for the potential equation (1) must
also satisfy the consistency condition

/ o(y)dS, = x,
oN

where x determines the growth of the harmonic function w(z) at infinity, see Chen and Zhou
[9, Theorems 6.12.1 and 6.12.5-6]. For exterior problems where the growth at infinity is O(1)
or for interior problems, we have xy = 0. In the case where the growth of w(z) at infinity is of
order xlog|z| + O(1), we can define the new variable w(z) = w(z) — x log |z| to eliminate x.
Thus without loss of generality, we assume in the following that the consistency condition is

/ o(y)dS, = 0. (5)
o0



Another thing we can assume without loss of generality is that

diam(99Q) = max |z —y| < 1. (6)
z,ycoN
For if (6) does not hold, we can always make a scaling transformation to reduce the diameter.
More precisely, let 0Q, = {p-z | ¢ € 00} with p > 0. Obviously, 092, will satisfy (6) if p
is properly chosen. We remark that (6) is used to guarantee that (4) is uniquely solvable, see
Theorem 1 below.
We note that in the transformed domain €,, (3) and (5) still holds. In fact, using (5), we
have

1 1 1
~or | togle—ylotas, = 5 [ logloz—plow)ds, + 5 [ logp-aty)ds,
T Joq T Joq T Joq
1 1
= —— logi—gj&gd5~+—logp/ o(y)dS
s |, 10818 = 10018+ 5 1osp | otw)as,
1
= —— log |z — y|o(g)dSy
27 o, |7 — 9] 7

where Z = pz, § = py and &(g) = o(y)/p. Thus (3) is equivalent to

0(2) =5 [ 1osla - iloto)ds; +
P 21 Jaq,
Clearly (5) is equivalent to |, o9, 7(y)dSy = 0. Thus in the following, we assume without loss of
generality that (3) and (5) hold in a domain that satisfies (6).
To find o(y) in (3), we first solve (4) for o1 (y) and o2(y). Then it is straightforward to verify
that o(y) is given by
o(y) = o1(y) — no2(y), (7)
where by (5), 1 is given by
_ Jono1(y)dS,

- fan o2(y)dSy .

We note that the denominator [y, o2(y)dS, cannot be zero, see Chen and Zhou [9, p.287].
Once o(y) and n are obtained, values of w(z) in © can be computed from (2). We remark that
o1(y) and o2(y) in (4) are not required to satisfy the consistency condition (5). The consistency
condition on o(y) is satisfied by the proper choice of 7 in (8).

Corresponding to (4), we define the boundary integral operator

(8)

(Au)(z) = —% /fm log |z — y|u(y)dSy, z € 0. 9)

We will use (-,-) to denote the inner product on L2(9§2) x L2(952). We now recall the well-

known result that A defines a continuous positive definite symmetric bilinear form on H : (092)
provided that (6) holds. We recall that (6) holds in general by scaling the region if necessary.

Theorem 1 (Hsiao and Wendland [13], Chen and Zhou [9, Remark 6.8.1]) Suppose
(6) holds. Then the bilinear form

(Au,v) = —i/ / log |z — ylu(y)v(z)dS,dS,  Vu,v € H 2(09) (10)
21 Jaq Joq
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is continuous, positive definite, symmetric on H_%(GQ). More precisely, there are constants
a > B3>0, such that

(Av,o) > alolly_y, Yo e H2(00) (11)
and

b Vu,v € H 2(09). (12)

(Au,v) < Bllull ;-3 [0l
In view of the theorem, we have for all v € H°(9Q) = L2(0Q),

2 2
o2y vy 2,

(@] S S .
WlEe — (v,v) 19]1350

Since the identity mapping from H°(9(2) to Hfé(aﬁ) involves a loss of a half derivative, we
expect the ratio ||v[|3,/ ||v||ir , and hence the condition number of the discretized matrix of A
2

to be growing like O(n) where n is the size of the discretization matrix. Thus if the conjugate
gradient method is employed to solve the system, we expect the number of iterations required
for convergence grows like O(y/n), see Golub and van Loan [11, Theorem 10.2.5] and also the
numerical results in §5.

For simplicity, we parametrize the boundary 0Q as (z1(6),z2(6)), 0 < @ < 27w. Then the
bilinear form in (10) can be rewritten as

(Au,v) = /0 " /0 7 (0, 9)u(0)o(@)d0ds (13)
with kernel function

a(t, ¢) = —ﬁ log {(z1(60) — 21(¢))” + (22(8) — z2(9))*} . (14)

As 0Q is a closed curve, a(f, ¢) is clearly 27m-periodic in both arguments. Since 02 is smooth,
the functions x1(-) and zo(-) are smooth. We can write

(z1(0) — 21(9))* + (x2(0) — 22(4))?
TP ) 09
Using the smoothness of z;(-) and z2(-), we have for all ¢ € [0,27] and j = —1,0,1,
. (21(0) = 21 () + (@2(0) ~ 22 (@)? || _ |, f @)+ ()] _
Jim, g | OGRS = o { FHE S o

Hence the second term in the right hand side of (15) is continuous in [0, 27]?. In particular, it is
a function in L2[0, 27)2. Clearly the first term in the right hand side of (15) is also in L2[0, 27]?.
Thus a(8, ¢) is in L2[0, 27]2.

al6.9) = ~ 5= gl (0 — ¢) (2~ |9~ )] - - o {

3 The Optimal Circulant Integral Operator

One way of overcoming the ill-conditioned nature of the operator A is to use a preconditioner.
Here we consider the use of circulant integral operators. These are integral operators of the form

21
Bu@) = [ bo—pu@rw.  0<p<2n

5



with 2m-periodic kernel function b(¢). The optimal circulant integral operator for A is the
unique circulant integral operator C that minimizes the Hilbert-Schmidt norm |||B — A||| over
all circulant integral operators B, where

2m 2m
1B — Al|f? = / / la(6, ) — b0 — ¢)|2d0d, (16)

see Gohberg et. al. [10].
Recall that for our boundary integral operator A as defined in (9), its kernel function a(-,-)
is 2m-periodic in both arguments and is in L2[0, 27]? (cf. (15)). Therefore

1 2
o) = %/ a(0,0— Ao,  0< < 2m, (17)
0

is a 27m-periodic function and is in L2[0, 27]. Hence

27
(Cu)(¢) = /0 (0 - Pul0)ds, 0<$<2r (18)

is a circulant integral operator. Moreover, we note that {eijg}jez forms a complete set of
eigenfunctions of C.

We now show that C as defined in (18) is the optimal circulant integral operator of A. For
this, we need the following lemma which will also be useful in the next section in analyzing the
convergence rate of the preconditioned systems.

Lemma 1 Let A be given as in (9) and C be the circulant integral operator as defined in (17)
and (18). Then o o
<.A67']9, ez]¢> _ <C62J9, el]¢>’ 3 =0,%£1,£2,---. (19)

Proof: By (13), we have, for all integers 7,

- - 2w 2w N 2w [ .
(et = [ [ oo,y i Odsas = [ [ alo.0 - p)ciodgas.
0 0 0 0—27

Since af(+,+) is 2m-periodic in both arguments, we have

(Ae'l? i) = / K / " 40,6 — B)d0)eidp = 2 / 7 ()eiag, (20)
0 0 0

where the last equality follows from (17). On the other hand, by (18), we have

2T 2T 2T )
(Ce? 19y / / (0 — $)e =) dodp = / / $)e P dpdo.
0 27r

Since ¢(¢) is 2m-periodic, we then have

2w 2w 2
Ceid?, ¢iidy — % dbd — 2 P dg.
e,y = [ [ careapan = 2 [ ety

Comparing this with (20), we have (19).

Now we are ready to prove that C in (18) is the optimal circulant integral operator for A
defined in (9).



Lemma 2 The operator C in (18) with kernel function (17) is the optimal circulant integral
operator for A defined in (9), i.e. it minimizes the Hilbert-Schmidt norm |||B — Al|| over all
circulant integral operators B.

Proof: Since a(f, ¢) € L?[0,27]%, we can write, by using Fourier expansions,

alB,4) = S (A 9y &9 0 <6, < 2m, (21)

j,l:—OO

For any circulant integral operator B, since its kernel function b(f — ¢) is 2m-periodic, we have
o0
b(O—¢)= > (B’ ) el 0<0,¢<2m
j=—00
Combining this with (21) and using the orthogonality of {e¥/?} jezz, we can rephrase the Hilbert-
Schmidt norm in (16) as

IA=BIIP= Y (A7, e9%) — (Be?,e9)[2 + 3 (A, )P,

Jj=—00 Jil=—o00

Clearly, the expression becomes minimal if and only if
(Bell? %) = (A 1% Vi e m.
Thus the result follows from Lemma 1.

Before discussing the nextllemma, which will be useful in the next section, it is worth noting
that for any function v € H™ 2 (012), there exists a sequence of scalars {v;};cz such that

o0

v(f) = Z Ujeijg

j==o0

and
0

9y -1
Iol2_y = 32 (1+52) H ol < oo,

j==o0

see Kress [15, Theorem 8.9]. This characterization of H : (092) is useful in the following lemma.

Lemma 3 Let u,v € H_%(BQ) with expansions

o0 oo
u(f) = Z uje'l’ and v(p) = Z ve?,
j=—00 l=—00
that satisfy
> 1 e 1
||u||ir% = > (1445 2u?<oo  and ||v||ir% = > 1+ 2y)? < 0.
j=—00 l=—00
Then
o0 o0
(Cu,v) = Z UjW<Ceij9,eil¢> = Z UjU_j<Ceij9,eij¢’). (22)
jl=—00 Jj=—00



Proof: Recall from (17) that the kernel function c(¢) of C is a 2n-periodic function in L2[0, 27].
Therefore {eijg}jez forms a complete orthonormal set of eigenfunctions of C. From this, the
last equality of (22) follows. By the dominated convergence theorem (cf. Rudin [16, p.26]), the
first equality in (22) holds if we can show that

e .. .
Z lu;T(Ce? )| < .
j,l:—OO
However, by (19), we have
e .. . e .. .. s .. ..
Do lumilCe’, M) = 3 fujug{Ce i) = 7 fujoj(Ae, €57,
j,l:—OO j:700 jzfoo
Hence by (12), we have
o o o L
— il 70 21
Y luw(Ce’, "N < B Y Jullugle’IZ ) =8 Y (L+5) 72 ugllvgl,
as ||eij9||irl =(1+ j2)_%. By using the Cauchy-Schwartz inequality, we then get
2
.. . o, _1 _1
Yo lum(Ce ) < Be D (1457 7wyl { > A+ 2|Uz|2}
j,l:—OO j=—00 [=—
= Bllullg-sllvll ;-3 < oo m

4 Condition Numbers of the Preconditioned Systems

In this section, we study the spectrum of the preconditioned operator C~' A and show that
the Galerkin approximation of the preconditioned operator results in well-conditioned discrete
systems. We begin by showing that the optimal circulant integral operator is also positive
definite and continuous.

Theorem 2 The optimal circulant integral operator C of A satisfies

(Cv,0) zalll’ ,, Vo H2(99) (23)
and .
(Cuv) < Bllull i yllvll -y, Vu,v € HTH(0Q) (24)

where o and 3 are given by (11) and (12).

Proof: Let v € H_%(aﬂ) with expansion

v(f) = Z vjeijg

j=—o0



which satisfies

oo
9\ 1
ollZ g = 3 (1457 ol < oo
j=—00
By (22), (19) and (11), we have
(Co,o) = Y JojP(Ce™’,e7%) = ) JuilP (A’ e99) > a0 Y JoPlle? 2
j=—o0 j=—o0 j=—o0

=(1 +j2)*%, we then have

Since |[e¥?|? |
H™ 2

o
2\—1, 19 2
(Co,v) >a Y (1+5%)72|v)] = allvll -
j=—o00
Similarly, for any u,v € H_%(BQ), by (22) and (19) again, we also have

(Cu,v) = Z u T (Ce? %) = Z u T {Aei?, ¢ii)

Hence by (12), we have

o0 o0
.. . _l
Co) <8 3 Tuillolle™IZ_y =5 3 (42 Hgllog] < Blluloy ol

j=—o0 j=—o0
where the last equality follows by using the Cauchy-Schwartz inequality.

As a consequence, we immediately have a bound on the spectrum of C~'A.

Theorem 3 There exist positive constants yo > v1 > 0 such that the spectrum of C~ ' A lies in
[v1,72]-

Proof: For any v € Hf%(aﬁ), we have, in view of (11), (12), (23) and (24),

ollol2,_y < (Av,v) < Bl

[ L
H 2 2

and

olloll?_y < (Cv,0) < Bllvll? _, .

Hence
< (Av, v)

Sk
R I

Next we consider the corlldition number of the discretized systems.1 Let V,, be a finite
dimensional subspace of H™2(9€2) and P, be the projection from H™2(9Q) onto V,. The
Galerkin approximation of the operator equation Ao = g in V,, is given by A, 0, = g, where



A, = PrAP,, P, is the adjoint operator of P,, o, = Ppo and g, = P,ig. For any v, € V,,
since P,v, = v,, we have

(Anvnavn> = (’P;;A’ann,vn> = <APnUnaPnUn> = <Avnavn>'
From (11) and (12), we therefore get

allonll?,_,

< (Anvnavn> < /8“Un||i1

_1-
2

For the preconditioner C, its Galerkin approximation in V, is given by C, = P;CP,. By
using Theorem 2 and arguments similar to above, we also get, for all v, € V,

ollonl? -y < (Cavm, va) < Blloall?,

1 _1-
2 2

Thus we see that for all v, € V,,

« <~Anvna Un>

/8 o <Cnvna Un>

Hence we have proved the following theorem.

IN

p
-~

Theorem 4 The condition number of C, ' Ay, is of order O(1) independent of n.

Thus if the preconditioned conjugate gradient method is employed to solve the preconditioned
system C, ' A0, = C,, 1gn, then the convergence rate of the method is linear, see Golub and van
Loan [11, Theorem 10.2.5].

Let us consider using the Galerkin method with piecewise polynomial basis functions {4},
on uniform grid to discretize the operators A and C. By (13), the (k,[)th entry of the discrete
matrix A, of A will be given by

27 27
Aulos = /0 /0 a0, B)r(0)(9)d0d. (25)

By (18) and (17), the (k,l)th entry of the Galerkin approximation C), of C will be given by

1 2 2w p2m
Cu=3= [ [ [ a6 =0+ opnonaracasas

Since a(-,-) is 2m-periodic in both arguments, this becomes

1 2w 2w 2w
Cea=3= [ [ [ alc+ 0.0+ 0pnoioracavas (26)

We note that in general the integrations in (25) and (26) are difficult to evaluate. In the
following, we prove that if the rectangle rule is used to discretize the inner-most integral in (26)
(i.e. the one w.r.t. (), then the resulting matrix is equal to the optimal circulant preconditioner
c(Ay) of Ay, which is defined to be the minimizer of | B, — A,||r over all circulant matrices
By, see T. Chan [2]. Here || - || is the Frobenius norm. Tyrtyshnikov [17] has shown that for a
general matrix W,,, the entries of its optimal circulant preconditioner ¢(W,,) are given by

n

1 1
[C(Wn)]k,l = ﬁ Z [Wn]i,j = H Z[Wn](lc-i-j)(mod n),(I4+37)(mod n)> 1<k, l<n. (27)
i—j=k—Il(mod n) j=1

10



Theorem 5 Let A, be the Galerkin approzimation of A as given by (25). Then the optimal
circulant preconditioner c(Ay) of Ay is equal to the Galerkin approzimation of C as given in
(26) with the inner-most integral (i.e. the one w.r.t. () discretized by the rectangle rule.

Proof: Using the rectangle rule, the (k,[)th entry of C,, in (26) becomes
h n 2 2w
= [ atine+ 0,h + 0y 0o
j=1
1 n 2 2w
= —Z/ / a(0, $) i (0 — jh)ii(p — jh)dode
niiJo Jo
1 n 2 2w
- EZ/O /0 a(8, D)Y(k+4-j)(mod n) (0)P(145)(mod n) (#)dOdp
j=1

1
= - > [An] (k) (mod m) (1) (mod n)

i=1
where the last equality follows from (25). Comparing this with (27), the theorem follows.

In the numerical results in the next section, we will use the Galerkin method with piecewise
constant polynomials to obtain the discrete approximation A, to A. In view of Theorem 5, we
will use ¢(A;) as an approximation to C and then use it to precondition A,,. We note that if A,
has special structure, then ¢(A,,) can be obtained fast. For example, if A,, is a Toeplitz matrix,
i.e. it is constant along the diagonals, then c¢(A,) can be obtained in O(n) operations, see
(27). As another example, if A, is a Hankel matrix, i.e. it is constant along the anti-diagonal,
then c¢(Ay,) can still be obtained in O(n) operations by summing the entries along the diagonals
recursively, starting from the upper-right hand corner of the matrix.

5 Numerical Results

In this section, we illustrate the effectiveness of the circulant preconditioners by solving the
boundary integral equation

2m
/0 a0, u($)dp = g(6),  0<0<2r (28)

on two types of regions: the ellipses and the dumb-bell shape regions. Since diam(92) may not
be less than 1 for some of these regions, we have scaled 92 such that (6) holds. More precisely,
if 6 = diam(9Q) is the diameter of a given boundary, then we consider the scaled boundary
0Q, = {pz/d | x € 00} with 0 < p < 1. It is clear that diam(9f2,) = p. In our test, we have
tested p = 1/2 and p = 3/4.

We discretize the equation and the right-hand side function in (28) by using the boundary
element method with piecewise constant elements on uniform mesh. Since the basis elements are
in H'/2=¢(9Q) for any € > 0, the computed solution w(z) of (1) will have regularity H3/2=¢(9Q)
on the boundary and H? ¢(2) in Q. This is generally acceptable as satisfactory, see for instance
Chen and Zhou [9, p.312].

11



Using n elements, the resulting discretization matrix A, is an n-by-n matrix. In view of
Theorem 5, the circulant preconditioner is chosen to be ¢(A,,). This amounts to integrating the
inner-most integral in (26) by the rectangle rule. The system Aju, = g, is solved by using
the preconditioned conjugate gradient method with or without the circulant preconditioner, see
Golub and van Loan [11, p.529] for the algorithm of the method. In the computations, we have
used the zero vector as the initial guess and the stopping criterion is ||74||2/||7oll2 < 10710, where
r¢ is the residual vector at the gth iteration. All our computations were done in Matlab on an
IBM 43P-133 workstation.

In the examples, in order to estimate the convergence of the computed solution u, to the
true solution u, we have used the right hand side function

g(0) =|cosfl2, 0<6<2r

Clearly, g(8) € H2~¢[0, 2] and hence u(f) € H!=[0, 27], see for instance Hsiao and Wendland
[13]. Therefore, u, converges to u like O(1/n) in H°(92), see Hsiao and Wendland [14, Corollary
2.1] and also Chen and Zhou [9, p.316]. Because u is not known in closed form, a direct
computation of the error is not possible. In the experiments, in order to illustrate the convergence
rate, we have computed the relative error as follows:

“un - un/ZHHO

(29)
[[m || o

en =

Example 1. Here 01 is the ellipse
1 =pcosf, x9=rwvsind, 0<80<2m.
For this problem, the kernel function (14) becomes

0—¢

0+ ¢ 2 29+¢)
2

1
)| = e log (4% sin? 5 + v“ cos 5

a,¢) = —%loggﬂsin(
= a1(9,¢)+a2(03¢)a

where 0 and p are respectively the diameters of the given and scaled boundaries. We note that
a1(0,$) is a singular function whereas as(0, ¢) is a smooth function. As mentioned above, the

right hand side function is chosen to be g(#) = | cos 9|g, 0<6< 2m.
To get the discretization matrix A, from the Galerkin method, we need to compute

2T 27 2T 27
A= [ [T @ om@m@wis+ [ [ aw. oo @i 1<k S(ZE))
where 1;(#) is the piecewise constant function

1/Vh if 0€[(l—1)h,lh),
— <[l <
() { 0 otherwise. lsism,

see (25). Here h = 2m/n is the mesh-size. Since ag(0, ¢) is smooth, we have computed the
second integral in (30) over each element by the trapezoid rule with 3 points in each direction.
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We note that the matrix it forms is a Hankel matrix, so only the first and the last columns are
required. Therefore the matrix can be generated in O(n) operations.

For the first integral in (30), since it forms a symmetric circulant matrix, only the first half
of the first column is needed, i.e. integration is required on sub-intervals of [0, 7 4 k] for the first
integral of (30). To evaluate the integrals, we write a1 (0, ¢) as

2sin(?52)

1 1
ai(0,¢) = —%log§|9— ¢l — %log W .

The integrals corresponding to the first term above can be evaluated analytically. Since the
second term above has continuous second order derivative in [0, 7+ h], its corresponding integrals
on sub-intervals of [0, 4+ h| can be evaluated by using the trapezoid rule again.

It follows from the above discussion that the discretization matrix A, for this problem is
a circulant-plus-Hankel matrix, which can be generated in O(n) operations. Using the special
structure of A,, the matrix-vector multiplication of A,x can be done in O(nlogn) operations
for any vector x by using the fast Fourier transform, see for instance Chan and Strang [8]. For
the optimal circulant preconditioner ¢(Ay,), since it is a circulant matrix, the cost of multiplying
c(A,)™! to any vector can also be done in O(nlogn) operations by using the fast Fourier
transform, see [8]. Thus the cost per iteration of the conjugate gradient method with or without
the circulant preconditioner is of O(nlogn) operations.

We remark that the construction of the optimal circulant preconditioner c¢(A,) requires
only O(n) operations. This is because ¢(-) is a linear operator, see (27). Therefore c¢(A;,) is
equal to the sum of the optimal circulant preconditioner for the circulant part of A, and the
optimal circulant preconditioner for the Hankel part of A,. Obviously, the optimal circulant
preconditioner of any circulant matrix is the circulant matrix itself. The optimal circulant
preconditioner of a Hankel matrix can be obtained in O(n) operations by summing the entries
along the diagonals recursively in (27), starting from the upper-right hand corner of the matrix.

Tables la and 1b give the number of iterations required for convergence for two different
choices of p. We see from the tables that for the circulant-preconditioned systems, the numbers
of iterations (listed under column ¢(A;)) are fixed independent of n, as have been proven in
Theorem 4. Hence the total cost of solving the system is of order O(nlogn) operations. In
contrast, the iteration numbers for the non-preconditioned systems (listed under column I)
are increasing with respect to n. We also see that the relative error e, as defined in (29) is
decreasing like O(1/n) as expected. We note that the convergence rates are independent of p,
the diameter of the boundary 0€2. Figure 1 gives the condition numbers of the matrix A4, and
the preconditioned matrix c(A4,) !4, for n = 32,64,...,1024 in log-log scale. We clearly see
from the slope of the lines that the condition numbers are indeed of O(n) and O(1) respectively.

We remark that because of the scaling, the solution u of (28), which is in fact the solution
o1(y) in (4), will be different for different p. Therefore, the relative errors e, in the tables are
different for different p. However, the solution o to (3) will be unique independent of the scaling
as n and o2(y) in (4) and (7) will be changed accordingly with the changing p.

Example 2. We consider dumb-bell shape curves (see Figure 2) defined in polar coordinates

by
r = cos 20 + fi(0), 0 <6< 2,
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p=1/2 p=2,v=1 pw=10,vr=1 pw=30,vr=1

n I c(Ay) én I c(Ay) én I c(Ay) en

32 10 4 — 10 7 — 10 8 —

64 21 4 1.292e-1 | 20 8 1.486e-1 | 22 10 1.429e-1
128 32 4 6.710e-2 | 33 8 7.994e-2 | 35 10 7.856e-2
256 47 4 3.48be-2 | 44 8 4.257e-2 | 45 10 4.297e-2
512 61 4 1.807e-2 | 58 8 2.249e-2 | 61 10 2.313e-2
1024 79 4 9.347e-3 | 78 8 1.181e-2 | 84 10 1.230e-2
2048 | 106 4 4.826e-3 | 106 8 6.175e-3 | 106 10 6.484e-3

Table 1la: Numbers of Iterations for Different Ellipses.
p=23/4 p=2,v=1 pw=10,vr=1 pw=30,vr=1
n I c(Ay) én I c(Ay) én I c(Ay) en

32 10 4 — 10 7 — 10 8 —

64 21 4 1.285e-1 | 21 8 1.483e-1 | 22 10 1.426e-1
128 31 4 6.671e-2 | 32 8 7.973e-2 | 34 10 7.843e-2
256 46 4 3.465e-2 | 44 8 4.246e-2 | 45 10 4.291e-2
512 61 4 1.796e-2 | 57 8 2.243e-2 | 60 10 2.309e-2
1024 79 4 9.293e-3 | 79 8 1.178e-2 | 80 10 1.228e-2
2048 | 106 4 4.798¢-3 | 106 8 6.159e-3 | 106 10 6.474e-3

Table 1b: Numbers of Iterations for Different Ellipses.
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A, with u=30
12| e
A, with p=10

An with u=2

,,,,,,,,,,,,,,,,,,, c(An)_lAn with u=30

= S
,,,,,,,,,,,,,,,,,,, c(A)) A, with u=10

= A
,,,,,,,,,,,,,,,,,,, C(An) An with u=2

4 5 6 7 8 9 10 11 12 13 14

solid line: condition numbers of Ay, dashed line: condition numbers of ¢(A4,) "1 A,

Figure 1. Condition numbers (in log-log scale) of A,, and ¢(4,)~'A4, for p = 1/2.

where f5(0) = (\*—sin® 20)'/? with A > 1. After scaling and some straightforward computations,
the kernel function (14) of these boundaries becomes

B 1 p.. . 0—09¢ 1 ) 0— ¢ cos 20 + cos 2¢ 2
a(0,¢) = ~5r log 5|251n | — in log {4sm2(9 + ) cosQ(T) (1 + m)
+ (cos 260 + f1(0))(cos 2¢ + f,\(¢))} . (31)

The kernel function a(f,®) can also be decomposed into two parts as in Example 1 and the
discretization matrix A, can be formed accordingly. Again, the right hand side is chosen to be
g(0) = | cos]>,0 < 0 < 2.

For this problem, the discretization matrix A, is a sum of two matrices in which the first
term is a circulant matrix corresponding to the first term in (31). The second term is a dense
matrix and has no special structure. Therefore the construction of A, and the matrix-vector
multiplication of A4, to any given vector both require O(n?) operations. However if fast multi-
plication schemes such as the fast multipole method are incorporated, see for instance [1, 6, 12],
then the construction cost of A, and the cost of the matrix-vector multiplication can both be
reduced to O(n) or O(nlogn) operations.

The discretization matrix of C is again chosen to be ¢(A,,). Since ¢(A,) is a circulant matrix,
the multiplication of its inverse to any vector can be done in O(nlogn) operations by using
the fast Fourier transform. Since A, is a dense matrix, construction of ¢(4,) requires O(n?)
operations, see (27). However, in Chan, Lin, Ng and Sun [6], we have devised an algorithm to
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solid line: A = 1.1, dashed line: A = 1.3, dotted line: A = 1.5
Figure 2. The Curves of Different Dumb-Bell Shape Regions.

p=1/2 A=1.1 A=13 A=15

n I ¢(Ay) en I ¢(Ay) en I c¢(Ay) en

32 9 6 9 ) 9 )

64 19 7 1.259e-1 | 20 6 1.198e-1 | 21 ) 1.189e-1
128 29 7 6.547e-2 | 30 6 6.202e-2 | 30 5 6.339-2
256 40 7 3.405e-2 | 41 6 3.213e-2 | 42 ) 3.174e-2
512 55 7 1.768e-2 | 55 6 1.663e-2 | 54 5 1.759%-2
1024 71 7 9.157e-3 | 72 6 8.587e-3 | 74 ) 8.452e-3
2048 | 93 7 4.733e-3 | 94 6 4.427e-3 | 95 5 4.351e-3

Table 2a: Numbers of Iterations for Dumb-Bell Shape Regions.

construct ¢(Ay) in O(nlogn) operations, see Table 9 in [6]. From Tables 2a and 2b, we see that
the iteration numbers of the preconditioned systems, as listed in column ¢(A,,) in the tables, are
uniformly bounded whereas those of the original systems, listed in column I, are increasing with
n as expected. Moreover, the relative error e, is also decreasing like O(1/n). In Figure 3, we
also give in log-log scale the condition numbers of the matrix A,, and the preconditioned matrix
c(Ap)" A, for n = 32,64,...,1024. From the slopes of the lines, we see that the condition
numbers are indeed of O(n) and O(1) respectively.

We emphasize again that if the fast multiplication scheme developed by Chan, Lin, Ng and
Sun in [6] is used, then the construction of A,, the matrix-vector multiplication of A, to any
vector, and the construction of ¢(A,) all require only O(nlogn) operations, see Tables 7 and
9 in [6]. Thus the total cost of solving the system is of order O(nlogn) operations if our fast
multiplication scheme is employed.

6 Concluding Remarks

We have shown in this paper that optimal circulant integral operators can be used to precondition
ill-conditioned matrices arising from boundary integral equations for the harmonic Dirichlet
problem. The resulting preconditioned systems are well-conditioned and the convergence rate
of our method is linear. We note that the results obtained here can be extended readily to other
boundary integral equations as long as its bilinear form is positive definite and continuous (see
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p=3/4 A=1.1 A=13 A=1.5

n I c(Ay) en I c(Ay) en I ¢(Ay) en

32 9 6 9 6 9 )

64 19 7 1.164e-1 | 20 6 1.134e-1 | 21 ) 1.135e-1
128 29 7 6.030e-2 | 30 6 5.854e-2 | 31 ) 5.850e-2
256 40 7 3.126e-2 | 41 6 3.025e-2 | 41 ) 3.018e-2
512 54 7 1.618e-2 | 54 6 1.562e-2 | 53 ) 1.556e-2
1024 70 7 8.362e-3 | 71 6 8.049e-3 | 74 ) 8.009e-3
2048 94 7 4.313e-3 | 94 6 4.142e-3 | 95 ) 4.117e-3

Table 2b: Numbers of Iterations for Dumb-Bell Shape Regions.

12

1+ -
An with A=1.1
10 A with =1.3
An with A=1.5

o o(A,)*A with A=1.1

,,,,,,,,,,,,,,,,,,, c(A)'A with1=1.3
Y T c(A)'A with A=1.5 4

2 I I I I I I I I I
4 5 6 7 8 9 10 11 12 13 14

solid line: condition numbers of A,,, dashed line: condition numbers of c(An)*lAn

Figure 3: Condition numbers (in log-log scale) of A, and c(A,)~ A, for p =1/2.



Theorem 2).
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