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Abstract

In this paper� we consider solving potential equations by the boundary integral equation
approach� The equations so derived are Fredholm integral equations of the �rst kind and
are known to be ill�conditioned� Their discretized matrices are dense and have condition
numbers growing like O�n� where n is the matrix size� We propose to solve the equations by
the preconditioned conjugate gradient method with circulant integral operators as precon�
ditioners� These are convolution operators with periodic kernels and hence can be inverted
e�ciently by using fast Fourier transforms� We prove that the preconditioned systems are
well�conditioned� and hence the convergence rate of the method is linear� Numerical results
for two types of regions are given to illustrate the fast convergence�
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� Introduction

In this paper� we study the solution of the potential equation�
�w�x
 � �� x � ��
w�x
 � g�x
� x � ���

�	


where �� is a smooth closed curve in IR� and � is either the bounded interior region with
boundary �� or the unbounded exterior region with boundary ��� In the boundary integral
equation approach� see for instance Chen and Zhou ��� x��	
�� the harmonic function w�x
 is
represented as a single�layer potential generated by a source distribution ��x
 over ��� with the
potential satisfying the boundary condition g�x
 prescribed for w�x
� More precisely� we write

w�x
 � � 	


�

Z
��

log jx� yj��y
dSy � �� x � � �



where Sy is the arc length variable corresponding to y and � is a constant to be determined�
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The limit of �

� as x is taken to ��� gives the integral equation on the boundary�

g�x
 � � 	


�

Z
��

log jx� yj��y
dSy � �� x � ��� ��


We will see in x
 that ��y
 and � can be obtained by solving the boundary integral equations

� 	


�

Z
��

log jx� yj�i�y
dSy � gi�x
� x � ��� i � 	� 
� ��


for ���y
 and ���y
 with g��x
 � g�x
 and g��x
 � 	� Once ��y
 and � are obtained� values of
w�x
 in � can be computed from �

�

The well�known advantage of the boundary integral equation approach is that the dimension
of the problem is reduced by one� The discrete matrix An associated with the integral equation
��
 is only of size n�by�n for mesh size proportional to 	�n� In contrast� the discrete matrix for
the partial di�erential equation �	
 will be of size n��by�n�� However� the major drawback of
the approach is that An is a dense matrix� Hence solving the problem with a direct method
will require O�n�
 operations which will be too expensive for practical� large scale numerical
computations�

If an iterative method� such as the conjugate gradient method �see Golub and van Loan �		�
p��
��
 is used� then the cost per iteration is dominated by the cost of multiplying An to a vector
say x� This in general requires O�n�
 operations� For some special boundaries ��� the product
Anx may be obtained fast� As an example� if �� is an ellipse� An will be a circulant�plus�Hankel
matrix and Anx can be computed in O�n log n
 operations� see Example 	 in x�� In general� we
can use fast multiplication schemes �	� �� 	
� to reduce the cost of multiplication to O�n log n

operations depending on the smoothness of the boundary�

Another di�culty for the boundary integral equation ��
 is that it is a Fredholm equation
of the �rst kind with a weakly singular kernel� see Kress �	�� p�
���� The matrix An therefore
is known to be ill�conditioned� In x
� we will see that the condition number of An increases
like O�n
� Therefore if the system is solved by the conjugate gradient method� the number of
iterations required for convergence will be increasing like O�n���
� see Golub and van Loan �		�
Theorem 	��
��� and also the numerical results in x��

One standard way to speed up the convergence rate in the conjugate gradient method is to
apply a preconditioner and then solve the preconditioned system� see Golub and van Loan �		�
p��
��� Gohberg� Hanke and Koltracht in �	�� have considered using circulant integral operators
to precondition Wiener�Hopf integral equations of the second kind de�ned on ����
� Circulant
integral operators are convolution operators with periodic kernels� Their inverses �both for the
continuous operators and for the discretized matrices
 can be obtained e�ciently using Fourier
transforms� For Wiener�Hopf equations of the second kind on ����
� which are convolution�type�
well�conditioned integral equations� Gohberg et� al� showed in �	�� that with preconditioning�
the convergence rate can be increased from linear to superlinear�

In this paper� we will consider the use of circulant integral operators as preconditioners for
integral equations of the �rst kind as given in ��
� Our integral equations are not of convolution�
type and are ill�conditioned� We will show that the preconditioned systems will become well�
conditioned and therefore the convergence rate is linear� In particular� the number of iterations
required for convergence is reduced from O�n���
 to O�	
 if our proposed preconditioner is used�

We remark that the discretization matrices of circulant integral operators using the rectan�
gular quadrature rule are circulant matrices� see for instance Chan� Jin and Ng ���� Circulant






matrices have been proposed and used as preconditioners for Toeplitz matrices in the past
ten years� see the survey paper by Chan and Ng ��� and the references therein� It is estab�
lished theoretically that the circulant�preconditioned systems converge superlinearly when the
given Toeplitz system is well�conditioned� see for instance Chan and Strang ���� However� the
performance of circulant preconditioners for ill�conditioned Toeplitz systems is not good in gen�
eral and in fact circulant preconditioners fail in some cases� see Chan ���� For these systems�
band�Toeplitz type preconditioners have been proven to make the ill�conditioned problems well�
conditioned� see for instance ���� We emphasize that in this paper� the discrete matrices An we
considered are ill�conditioned and are not Toeplitz matrices� But our results imply that they
can be preconditioned by circulant matrices to obtain well�conditioned systems�

One kind of circulant preconditioner that has been investigated extensively in the study
of preconditioners for Toeplitz matrices is the optimal circulant preconditioner proposed by T�
Chan in �
�� It can be de�ned for arbitrary matrices� T� Chan�s idea of constructing optimal
circulant preconditioners has been incorporated in Gohberg� Hanke and Koltracht �	�� in de�
veloping optimal circulant integral operators for convolution�type integral operators� Chan and
Lin ��� later extended the idea to develop optimal circulant integral operators for general non�
convolution type integral operators� In this paper� we will concentrate on the use of optimal
circulant integral operators for ��
�

The outline of the paper is as follows� In x
� we show the equivalence of the equations ��

and ��
 and give some properties of ��
� In particular� we note that the discretized systems of
��
 will be ill�conditioned� In x�� we introduce the optimal circulant integral operator for ��
 and
study some properties of its associated bilinear form� In x� we show that the condition numbers
of the discretized circulant�preconditioned systems are uniformly bounded independent of the
size of the systems� Numerical results for two types of domains are given in x� to illustrate the
fast convergence of our method and some concluding remarks are given in x��

� The Boundary Integral Operator

In this section� we review some basic results of boundary integral equations and of the boundary
integral operators they induce� In particular� we show that the density function ��y
 in ��
 can
be obtained by solving ���y
 and ���y
 in ��
 and that the boundary integral operator induced
by ��
 is ill�conditioned� These results are well�known but we recall them here for completeness�

We �rst note that� besides ��
� the density function ��y
 for the potential equation �	
 must
also satisfy the consistency condition Z

��
��y
dSy � 	�

where 	 determines the growth of the harmonic function w�x
 at in�nity� see Chen and Zhou
��� Theorems ��	
�	 and ��	
������ For exterior problems where the growth at in�nity is O�	

or for interior problems� we have 	 � �� In the case where the growth of w�x
 at in�nity is of
order 	 log jxj � O�	
� we can de�ne the new variable �w�x
 � w�x
 � 	 log jxj to eliminate 	�
Thus without loss of generality� we assume in the following that the consistency condition isZ

��
��y
dSy � �� ��


�



Another thing we can assume without loss of generality is that

diam���
 � max
x�y���

jx� yj 
 	� ��


For if ��
 does not hold� we can always make a scaling transformation to reduce the diameter�
More precisely� let ��� � f� � x j x � ��g with � � �� Obviously� ��� will satisfy ��
 if �
is properly chosen� We remark that ��
 is used to guarantee that ��
 is uniquely solvable� see
Theorem 	 below�

We note that in the transformed domain ��� ��
 and ��
 still holds� In fact� using ��
� we
have

� 	


�

Z
��

log jx� yj��y
dSy � � 	


�

Z
��

log j�x� �yj��y
dSy �
	


�

Z
��

log � � ��y
dSy

� � 	


�

Z
���

log j�x� �yj����y
dS�y �
	


�
log �

Z
��

��y
dSy

� � 	


�

Z
���

log j�x� �yj����y
dS�y�

where �x � �x� �y � �y and ����y
 � ��y
��� Thus ��
 is equivalent to

g

�
�x

�

�
� � 	


�

Z
���

log j�x� �yj����y
dS�y � ��

Clearly ��
 is equivalent to
R
���

����y
dS�y � �� Thus in the following� we assume without loss of

generality that ��
 and ��
 hold in a domain that satis�es ��
�
To �nd ��y
 in ��
� we �rst solve ��
 for ���y
 and ���y
� Then it is straightforward to verify

that ��y
 is given by
��y
 � ���y
� ����y
� ��


where by ��
� � is given by

� �

R
�� ���y
dSyR
�� ���y
dSy

� ��


We note that the denominator
R
�� ���y
dSy cannot be zero� see Chen and Zhou ��� p�
����

Once ��y
 and � are obtained� values of w�x
 in � can be computed from �

� We remark that
���y
 and ���y
 in ��
 are not required to satisfy the consistency condition ��
� The consistency
condition on ��y
 is satis�ed by the proper choice of � in ��
�

Corresponding to ��
� we de�ne the boundary integral operator

�Au
�x
 � � 	


�

Z
��

log jx� yju�y
dSy� x � ��� ��


We will use h�� �i to denote the inner product on L����
 � L����
� We now recall the well�

known result that A de�nes a continuous positive de�nite symmetric bilinear form on H� �

� ���

provided that ��
 holds� We recall that ��
 holds in general by scaling the region if necessary�

Theorem � �Hsiao and Wendland ���	
 Chen and Zhou ��
 Remark ��
��	� Suppose

��� holds� Then the bilinear form

hAu� vi � � 	


�

Z
��

Z
��

log jx� yju�y
v�x
dSydSx �u� v � H� �

� ���
 �	�


�



is continuous� positive de�nite� symmetric on H� �

� ���
� More precisely� there are constants


 � � � �� such that

hAv� vi � 
kvk�
H
� �

�

� �v � H� �

� ���
 �		


and

hAu� vi 	 �kuk
H
� �

�

kvk
H
� �

�

� �u� v �H� �

� ���
� �	



In view of the theorem� we have for all v � H����
 � L����
�



kvk�

H
� �
�

kvk�
H�

	 hAv� vi
hv� vi 	 �

kvk�
H
� �
�

kvk�
H�

�

Since the identity mapping from H����
 to H� �

� ���
 involves a loss of a half derivative� we
expect the ratio kvk�

H��kvk�
H
� �

�

and hence the condition number of the discretized matrix of A
to be growing like O�n
 where n is the size of the discretization matrix� Thus if the conjugate
gradient method is employed to solve the system� we expect the number of iterations required
for convergence grows like O�

p
n
� see Golub and van Loan �		� Theorem 	��
��� and also the

numerical results in x��
For simplicity� we parametrize the boundary �� as �x���
� x���

� � 	 � 	 
�� Then the

bilinear form in �	�
 can be rewritten as

hAu� vi �
Z ��

�

Z ��

�
a��� �
u��
v��
d�d� �	�


with kernel function

a��� �
 � � 	

��
log
�
�x���
� x���



� � �x���
� x���


�
�
� �	�


As �� is a closed curve� a��� �
 is clearly 
��periodic in both arguments� Since �� is smooth�
the functions x���
 and x���
 are smooth� We can write

a��� �
 � � 	


�
log j����
�
�� j���j
j � 	

��
log

�
�x���
� x���



� � �x���
� x���


�

�� � �
��
� � j� � �j
�
�
� �	�


Using the smoothness of x���
 and x���
� we have for all � � ��� 
�� and j � �	� �� 	����� lim
�����j�

log

�
�x���
� x���



� � �x���
� x���


�

�� � �
��
� � j� � �j
�
����� �

����log
�
�x����



� � �x����


�

���

����� 
��

Hence the second term in the right hand side of �	�
 is continuous in ��� 
���� In particular� it is
a function in L���� 
���� Clearly the �rst term in the right hand side of �	�
 is also in L���� 
����
Thus a��� �
 is in L���� 
����

� The Optimal Circulant Integral Operator

One way of overcoming the ill�conditioned nature of the operator A is to use a preconditioner�
Here we consider the use of circulant integral operators� These are integral operators of the form

�Bu
��
 �
Z ��

�
b�� � �
u��
d�� � 	 � 	 
�

�



with 
��periodic kernel function b��
� The optimal circulant integral operator for A is the
unique circulant integral operator C that minimizes the Hilbert�Schmidt norm jjjB � Ajjj over
all circulant integral operators B� where

jjjB � Ajjj� �
Z ��

�

Z ��

�
ja��� �
� b�� � �
j�d�d�� �	�


see Gohberg et� al� �	���
Recall that for our boundary integral operator A as de�ned in ��
� its kernel function a��� �


is 
��periodic in both arguments and is in L���� 
��� �cf� �	�

� Therefore

c��
 � 	


�

Z ��

�
a��� � � �
d�� � 
 � 
 
�� �	�


is a 
��periodic function and is in L���� 
��� Hence

�Cu
��
 �
Z ��

�
c�� � �
u��
d�� � 	 � 	 
� �	�


is a circulant integral operator� Moreover� we note that feij�gj�ZZ forms a complete set of
eigenfunctions of C�

We now show that C as de�ned in �	�
 is the optimal circulant integral operator of A� For
this� we need the following lemma which will also be useful in the next section in analyzing the
convergence rate of the preconditioned systems�

Lemma � Let A be given as in ��� and C be the circulant integral operator as de�ned in �	
�

and �	��� Then

hAeij�� eij�i � hCeij�� eij�i� j � ��
	�

� � � � � �	�


Proof� By �	�
� we have� for all integers j�

hAeij�� eij�i �
Z ��

�

Z ��

�
a��� �
eij����	d�d� �

Z ��

�

Z �

����
a��� � � �
eij�d�d��

Since a��� �
 is 
��periodic in both arguments� we have

hAeij�� eij�i �
Z ��

�
�

Z ��

�
a��� � � �
d�
eij�d� � 
�

Z ��

�
c��
eij�d�� �
�


where the last equality follows from �	�
� On the other hand� by �	�
� we have

hCeij�� eij�i �
Z ��

�

Z ��

�
c�� � �
eij����	d�d� �

Z ��

�

Z �

����
c��
eij�d�d��

Since c��
 is 
��periodic� we then have

hCeij�� eij�i �
Z ��

�

Z ��

�
c��
eij�d�d� � 
�

Z ��

�
c��
eij�d��

Comparing this with �
�
� we have �	�
�

Now we are ready to prove that C in �	�
 is the optimal circulant integral operator for A
de�ned in ��
�

�



Lemma � The operator C in �	�� with kernel function �	
� is the optimal circulant integral
operator for A de�ned in ���� i�e� it minimizes the Hilbert�Schmidt norm jjjB � Ajjj over all

circulant integral operators B�
Proof� Since a��� �
 � L���� 
���� we can write� by using Fourier expansions�

a��� �
 �
�X

j�l
��

hAeij�� eil�i eij�e�il�� � 	 �� � 	 
�� �
	


For any circulant integral operator B� since its kernel function b�� � �
 is 
��periodic� we have

b�� � �
 �

�X
j
��

hBeij�� eij�i eij�e�ij�� � 	 �� � 	 
��

Combining this with �
	
 and using the orthogonality of feij�gj�ZZ� we can rephrase the Hilbert�
Schmidt norm in �	�
 as

jjjA � Bjjj� �
�X

j
��

jhAeij�� eij�i � hBeij�� eij�ij� �
�X

j�l���

j �
l

jhAeij�� eil�ij��

Clearly� the expression becomes minimal if and only if

hBeij�� eij�i � hAeij�� eij�i� �j � ZZ�

Thus the result follows from Lemma 	�

Before discussing the next lemma� which will be useful in the next section� it is worth noting
that for any function v � H� �

� ���
� there exists a sequence of scalars fvjgj�ZZ such that

v��
 �

�X
j
��

vje
ij�

and

kvk�
H
� �

�

�
�X

j
��

�	 � j�
�
�

� jvj j� 
��

see Kress �	�� Theorem ����� This characterization of H� �

� ���
 is useful in the following lemma�

Lemma � Let u� v � H� �

� ���
 with expansions

u��
 �
�X

j
��

uje
ij� and v��
 �

�X
l
��

vle
il��

that satisfy

kuk�
H
� �
�

�
�X

j
��

�	 � j�
�
�

� juj j� 
� and kvk�
H
� �
�

�
�X

l
��

�	 � l�
�
�

� jvlj� 
��

Then

hCu� vi �
�X

j�l
��

ujvlhCeij�� eil�i �
�X

j
��

ujvjhCeij�� eij�i� �




�



Proof� Recall from �	�
 that the kernel function c��
 of C is a 
��periodic function in L���� 
���
Therefore feij�gj�ZZ forms a complete orthonormal set of eigenfunctions of C� From this� the
last equality of �


 follows� By the dominated convergence theorem �cf� Rudin �	�� p�
��
� the
�rst equality in �


 holds if we can show that

�X
j�l
��

jujvlhCeij�� eil�ij 
��

However� by �	�
� we have

�X
j�l
��

jujvlhCeij�� eil�ij �
�X

j
��

jujvjhCeij�� eij�ij �
�X

j
��

jujvjhAeij�� eij�ij�

Hence by �	

� we have

�X
j�l
��

jujvlhCeij�� eil�ij 	 �

�X
j
��

juj jjvj jkeij�k�
H
� �
�

� �

�X
j
��

�	 � j�
�
�

� juj jjvj j�

as keij�k�
H
� �

�

� �	 � j�
�
�

� � By using the Cauchy�Schwartz inequality� we then get

�X
j�l
��

jujvlhCeij�� eil�ij 	 �

�	



�X
j
��

�	 � j�
�
�

� juj j�
��



����
�X

l
��

�	 � l�
�
�

� jvlj�
����

� �kuk
H
� �

�

kvk
H
� �

�


��

� Condition Numbers of the Preconditioned Systems

In this section� we study the spectrum of the preconditioned operator C��A and show that
the Galerkin approximation of the preconditioned operator results in well�conditioned discrete
systems� We begin by showing that the optimal circulant integral operator is also positive
de�nite and continuous�

Theorem � The optimal circulant integral operator C of A satis�es

hCv� vi � 
kvk�
H
� �

�

� �v �H� �

� ���
 �
�


and

hCu� vi 	 �kuk
H
� �

�

kvk
H
� �

�

� �u� v � H� �

� ���
 �
�


where 
 and � are given by �		� and �	
��

Proof� Let v � H� �

� ���
 with expansion

v��
 �
�X

j
��

vje
ij�

�



which satis�es

kvk�
H
� �

�

�

�X
j
��

�	 � j�
�
�

� jvj j� 
��

By �


� �	�
 and �		
� we have

hCv� vi �
�X

j
��

jvjj�hCeij�� eij�i �
�X

j
��

jvj j�hAeij�� eij�i � 

�X

j
��

jvjj�keij�k�
H
� �

�

�

Since keij�k�
H
� �

�

� �	 � j�
�
�

� � we then have

hCv� vi � 


�X
j
��

�	 � j�
�
�

� jvjj� � 
kvk�
H
� �

�

�

Similarly� for any u� v � H� �

� ���
� by �


 and �	�
 again� we also have

hCu� vi �
�X

j
��

ujvjhCeij�� eij�i �
�X

j
��

ujvjhAeij�� eij�i�

Hence by �	

� we have

hCu� vi 	 �

�X
j
��

juj jjvj jkeij�k�
H
� �

�

� �

�X
j
��

�	 � j�
�
�

� juj jjvj j 	 �kuk
H
� �

�

kvk
H
� �

�

�

where the last equality follows by using the Cauchy�Schwartz inequality�

As a consequence� we immediately have a bound on the spectrum of C��A�

Theorem � There exist positive constants �� � �� � � such that the spectrum of C��A lies in

���� ����

Proof� For any v � H� �

� ���
� we have� in view of �		
� �	

� �
�
 and �
�
�


kvk�
H
� �

�

	 hAv� vi 	 �kvk�
H
� �

�

and

kvk�

H
� �
�

	 hCv� vi 	 �kvk�
H
� �
�

�

Hence



�
	 hAv� vi

hCv� vi 	
�



�

Next we consider the condition number of the discretized systems� Let Vn be a �nite
dimensional subspace of H� �

� ���
 and Pn be the projection from H� �

� ���
 onto Vn� The
Galerkin approximation of the operator equation A� � g in Vn is given by An�n � gn where

�



An � P�
nAPn� P�

n is the adjoint operator of Pn� �n � Pn� and gn � P�
ng� For any vn � Vn�

since Pnvn � vn� we have

hAnvn� vni � hP�
nAPnvn� vni � hAPnvn�Pnvni � hAvn� vni�

From �		
 and �	

� we therefore get


kvnk�
H
� �

�

	 hAnvn� vni 	 �kvnk�
H
� �

�

�

For the preconditioner C� its Galerkin approximation in Vn is given by Cn � P�
nCPn� By

using Theorem 
 and arguments similar to above� we also get� for all vn � Vn


kvnk�
H
� �

�

	 hCnvn� vni 	 �kvnk�
H
� �

�

�

Thus we see that for all vn � Vn�




�
	 hAnvn� vni

hCnvn� vni 	
�



�

Hence we have proved the following theorem�

Theorem � The condition number of C��
n An is of order O�	
 independent of n�

Thus if the preconditioned conjugate gradient method is employed to solve the preconditioned
system C��

n An�n � C��
n gn� then the convergence rate of the method is linear� see Golub and van

Loan �		� Theorem 	��
����
Let us consider using the Galerkin method with piecewise polynomial basis functions f�lgnl
�

on uniform grid to discretize the operators A and C� By �	�
� the �k� l
th entry of the discrete
matrix An of A will be given by

�An�k�l �

Z ��

�

Z ��

�
a��� �
�k��
�l��
d�d�� �
�


By �	�
 and �	�
� the �k� l
th entry of the Galerkin approximation Cn of C will be given by

�Cn�k�l �
	


�

Z ��

�

Z ��

�

Z ��

�
a��� � � � � �
�k��
�l��
d�d�d��

Since a��� �
 is 
��periodic in both arguments� this becomes

�Cn�k�l �
	


�

Z ��

�

Z ��

�

Z ��

�
a�� � �� � � �
�k��
�l��
d�d�d�� �
�


We note that in general the integrations in �
�
 and �
�
 are di�cult to evaluate� In the
following� we prove that if the rectangle rule is used to discretize the inner�most integral in �
�

�i�e� the one w�r�t� �
� then the resulting matrix is equal to the optimal circulant preconditioner

c�An
 of An� which is de�ned to be the minimizer of kBn � AnkF over all circulant matrices
Bn� see T� Chan �
�� Here k � kF is the Frobenius norm� Tyrtyshnikov �	�� has shown that for a
general matrix Wn� the entries of its optimal circulant preconditioner c�Wn
 are given by

�c�Wn
�k�l �
	

n

X
i�j
k�l�mod n	

�Wn�i�j �
	

n

nX
j
�

�Wn��k�j	�mod n	��l�j	�mod n	� 	 	 k� l 	 n� �
�


	�



Theorem � Let An be the Galerkin approximation of A as given by �
��� Then the optimal
circulant preconditioner c�An
 of An is equal to the Galerkin approximation of C as given in

�
�� with the inner�most integral �i�e� the one w�r�t� �� discretized by the rectangle rule�

Proof� Using the rectangle rule� the �k� l
th entry of Cn in �
�
 becomes

h


�

nX
j
�

Z ��

�

Z ��

�
a�jh� �� jh� �
�k��
�l��
d�d�

�
	

n

nX
j
�

Z ��

�

Z ��

�
a��� �
�k�� � jh
�l��� jh
d�d�

�
	

n

nX
j
�

Z ��

�

Z ��

�
a��� �
��k�j	�mod n	��
��l�j	�mod n	��
d�d�

�
	

n

nX
j
�

�An��k�j	�mod n	��l�j	�mod n	

where the last equality follows from �
�
� Comparing this with �
�
� the theorem follows�

In the numerical results in the next section� we will use the Galerkin method with piecewise
constant polynomials to obtain the discrete approximation An to A� In view of Theorem �� we
will use c�An
 as an approximation to C and then use it to precondition An� We note that if An

has special structure� then c�An
 can be obtained fast� For example� if An is a Toeplitz matrix�
i�e� it is constant along the diagonals� then c�An
 can be obtained in O�n
 operations� see
�
�
� As another example� if An is a Hankel matrix� i�e� it is constant along the anti�diagonal�
then c�An
 can still be obtained in O�n
 operations by summing the entries along the diagonals
recursively� starting from the upper�right hand corner of the matrix�

� Numerical Results

In this section� we illustrate the e�ectiveness of the circulant preconditioners by solving the
boundary integral equationZ ��

�
a��� �
u��
d� � g��
� � 	 � 	 
� �
�


on two types of regions� the ellipses and the dumb�bell shape regions� Since diam���
 may not
be less than 	 for some of these regions� we have scaled �� such that ��
 holds� More precisely�
if � � diam���
 is the diameter of a given boundary� then we consider the scaled boundary
��� � f�x�� j x � ��g with � 
 � 
 	� It is clear that diam����
 � �� In our test� we have
tested � � 	�
 and � � ����

We discretize the equation and the right�hand side function in �
�
 by using the boundary
element method with piecewise constant elements on uniform mesh� Since the basis elements are
in H��������
 for any � � �� the computed solution w�x
 of �	
 will have regularity H��������

on the boundary and H�����
 in �� This is generally acceptable as satisfactory� see for instance
Chen and Zhou ��� p��	
��

		



Using n elements� the resulting discretization matrix An is an n�by�n matrix� In view of
Theorem �� the circulant preconditioner is chosen to be c�An
� This amounts to integrating the
inner�most integral in �
�
 by the rectangle rule� The system Anun � gn is solved by using
the preconditioned conjugate gradient method with or without the circulant preconditioner� see
Golub and van Loan �		� p��
�� for the algorithm of the method� In the computations� we have
used the zero vector as the initial guess and the stopping criterion is krqk��kr�k� 	 	����� where
rq is the residual vector at the qth iteration� All our computations were done in Matlab on an
IBM ��P�	�� workstation�

In the examples� in order to estimate the convergence of the computed solution un to the
true solution u� we have used the right hand side function

g��
 � j cos �j �� � � 	 � 	 
��

Clearly� g��
 � H������ 
�� and hence u��
 � H������ 
��� see for instance Hsiao and Wendland
�	��� Therefore� un converges to u like O�	�n
 inH

����
� see Hsiao and Wendland �	�� Corollary

�	� and also Chen and Zhou ��� p��	��� Because u is not known in closed form� a direct
computation of the error is not possible� In the experiments� in order to illustrate the convergence
rate� we have computed the relative error as follows�

en �
kun � un��kH�

kunkH�

� �
�


Example �� Here �� is the ellipse

x� � � cos �� x� � � sin �� � 	 � 	 
��

For this problem� the kernel function �	�
 becomes

a��� �
 � � 	


�
log

�

�
j
 sin�� � �




j � 	

��
log��� sin�

� � �



� �� cos�

� � �






� a���� �
 � a���� �
�

where � and � are respectively the diameters of the given and scaled boundaries� We note that
a���� �
 is a singular function whereas a���� �
 is a smooth function� As mentioned above� the

right hand side function is chosen to be g��
 � j cos �j �� � � 	 � 	 
��
To get the discretization matrix An from the Galerkin method� we need to compute

�An�kl �

Z ��

�

Z ��

�
a���� �
�k��
�l��
d�d��

Z ��

�

Z ��

�
a���� �
�k��
�l��
d�d�� 	 	 k� l 	 n�

���

where �l��
 is the piecewise constant function

�l��
 �

�
	�
p
h if � � ��l � 	
h� lh
�

� otherwise�
	 	 l 	 n�

see �
�
� Here h � 
��n is the mesh�size� Since a���� �
 is smooth� we have computed the
second integral in ���
 over each element by the trapezoid rule with � points in each direction�

	




We note that the matrix it forms is a Hankel matrix� so only the �rst and the last columns are
required� Therefore the matrix can be generated in O�n
 operations�

For the �rst integral in ���
� since it forms a symmetric circulant matrix� only the �rst half
of the �rst column is needed� i�e� integration is required on sub�intervals of ��� ��h� for the �rst
integral of ���
� To evaluate the integrals� we write a���� �
 as

a���� �
 � � 	


�
log

�

�
j� � �j � 	


�
log

�����
 sin�
���
� 


� � �

����� �
The integrals corresponding to the �rst term above can be evaluated analytically� Since the
second term above has continuous second order derivative in ��� ��h�� its corresponding integrals
on sub�intervals of ��� � � h� can be evaluated by using the trapezoid rule again�

It follows from the above discussion that the discretization matrix An for this problem is
a circulant�plus�Hankel matrix� which can be generated in O�n
 operations� Using the special
structure of An� the matrix�vector multiplication of Anx can be done in O�n logn
 operations
for any vector x by using the fast Fourier transform� see for instance Chan and Strang ���� For
the optimal circulant preconditioner c�An
� since it is a circulant matrix� the cost of multiplying
c�An


�� to any vector can also be done in O�n logn
 operations by using the fast Fourier
transform� see ���� Thus the cost per iteration of the conjugate gradient method with or without
the circulant preconditioner is of O�n logn
 operations�

We remark that the construction of the optimal circulant preconditioner c�An
 requires
only O�n
 operations� This is because c��
 is a linear operator� see �
�
� Therefore c�An
 is
equal to the sum of the optimal circulant preconditioner for the circulant part of An and the
optimal circulant preconditioner for the Hankel part of An� Obviously� the optimal circulant
preconditioner of any circulant matrix is the circulant matrix itself� The optimal circulant
preconditioner of a Hankel matrix can be obtained in O�n
 operations by summing the entries
along the diagonals recursively in �
�
� starting from the upper�right hand corner of the matrix�

Tables 	a and 	b give the number of iterations required for convergence for two di�erent
choices of �� We see from the tables that for the circulant�preconditioned systems� the numbers
of iterations �listed under column c�An

 are �xed independent of n� as have been proven in
Theorem �� Hence the total cost of solving the system is of order O�n log n
 operations� In
contrast� the iteration numbers for the non�preconditioned systems �listed under column I

are increasing with respect to n� We also see that the relative error en as de�ned in �
�
 is
decreasing like O�	�n
 as expected� We note that the convergence rates are independent of ��
the diameter of the boundary ��� Figure 	 gives the condition numbers of the matrix An and
the preconditioned matrix c�An


��An for n � �
� ��� � � � � 	�
� in log�log scale� We clearly see
from the slope of the lines that the condition numbers are indeed of O�n
 and O�	
 respectively�

We remark that because of the scaling� the solution u of �
�
� which is in fact the solution
���y
 in ��
� will be di�erent for di�erent �� Therefore� the relative errors en in the tables are
di�erent for di�erent �� However� the solution � to ��
 will be unique independent of the scaling
as � and ���y
 in ��
 and ��
 will be changed accordingly with the changing ��

Example �� We consider dumb�bell shape curves �see Figure 

 de�ned in polar coordinates
by

r � cos 
� � f	��
� � 	 � 	 
��

	�
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Table �a� Numbers of Iterations for Di�erent Ellipses�
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where f	��
 � ��
�sin� 
�
��� with � � 	� After scaling and some straightforward computations�
the kernel function �	�
 of these boundaries becomes

a��� �
 � � 	


�
log

�

�
j
 sin � � �



j � 	

��
log

�
� sin��� � �
 cos��
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�
� ��	


The kernel function a��� �
 can also be decomposed into two parts as in Example 	 and the
discretization matrix An can be formed accordingly� Again� the right hand side is chosen to be
g��
 � j cos �j �� � � 	 � 	 
��

For this problem� the discretization matrix An is a sum of two matrices in which the �rst
term is a circulant matrix corresponding to the �rst term in ��	
� The second term is a dense
matrix and has no special structure� Therefore the construction of An and the matrix�vector
multiplication of An to any given vector both require O�n�
 operations� However if fast multi�
plication schemes such as the fast multipole method are incorporated� see for instance �	� �� 	
��
then the construction cost of An and the cost of the matrix�vector multiplication can both be
reduced to O�n
 or O�n logn
 operations�

The discretization matrix of C is again chosen to be c�An
� Since c�An
 is a circulant matrix�
the multiplication of its inverse to any vector can be done in O�n logn
 operations by using
the fast Fourier transform� Since An is a dense matrix� construction of c�An
 requires O�n

�

operations� see �
�
� However� in Chan� Lin� Ng and Sun ���� we have devised an algorithm to

	�
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Figure �� The Curves of Di�erent Dumb�Bell Shape Regions�
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Table �a� Numbers of Iterations for Dumb�Bell Shape Regions�

construct c�An
 in O�n log n
 operations� see Table � in ���� From Tables 
a and 
b� we see that
the iteration numbers of the preconditioned systems� as listed in column c�An
 in the tables� are
uniformly bounded whereas those of the original systems� listed in column I� are increasing with
n as expected� Moreover� the relative error en is also decreasing like O�	�n
� In Figure �� we
also give in log�log scale the condition numbers of the matrix An and the preconditioned matrix
c�An


��An for n � �
� ��� � � � � 	�
�� From the slopes of the lines� we see that the condition
numbers are indeed of O�n
 and O�	
 respectively�

We emphasize again that if the fast multiplication scheme developed by Chan� Lin� Ng and
Sun in ��� is used� then the construction of An� the matrix�vector multiplication of An to any
vector� and the construction of c�An
 all require only O�n logn
 operations� see Tables � and
� in ���� Thus the total cost of solving the system is of order O�n log n
 operations if our fast
multiplication scheme is employed�

� Concluding Remarks

We have shown in this paper that optimal circulant integral operators can be used to precondition
ill�conditioned matrices arising from boundary integral equations for the harmonic Dirichlet
problem� The resulting preconditioned systems are well�conditioned and the convergence rate
of our method is linear� We note that the results obtained here can be extended readily to other
boundary integral equations as long as its bilinear form is positive de�nite and continuous �see

	�
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