A Note on the Besov Space $B_2^{\frac{1}{2}\dagger}$

Raymond H. Chan

Department of Mathematics The Chinese University of Hong Kong and Man-Chung Yeung

Department of Mathematics University of California, Los Angeles

Abstract. We consider complex-valued functions f defined on the unit circle T that are continuous for all $t \in T$ except at a point t_0 where the left- and right-hand limits of f both exist. Using matrix methods, we show that if f is in the Besov class $B_2^{\frac{1}{2}}(T)$, then f is continuous at t_0 . In particular, we prove that if the left- and right-hand limits of f are not equal at t_0 , then $\sum_{k=-\infty}^{\infty} |k| |a_k[f]|^2 = \infty$, where $a_k[f]$ are the Fourier coefficients of f.

Key Words. Besov class, Toeplitz matrix, Circulant matrix, Hilbert matrix.

AMS(MOS) Subject Classifications. 46E30, 46B99

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

[†]Research supported in part by HKRGC grant no. 221600070.

1. Introduction.

Let T be the unit circle in the complex plane. For $1 \le p < \infty$, let L^p be the Banach space of all complex-valued Lebesgue measurable functions f on T for which the L^p norm

$$\|f\|_{p} \equiv \left\{\frac{1}{2\pi} \int_{-\pi}^{\pi} \left|f(e^{i\theta})\right|^{p} d\theta\right\}^{\frac{1}{p}}$$

is finite. For $\phi \in \mathbf{R}$, the set of real numbers, we define the operator δ_{ϕ} as

$$(\delta_{\phi}f)(e^{i\theta}) \equiv f(e^{i(\theta+\phi)}) - f(e^{i\theta}), \quad \forall \theta \in \mathbf{R}.$$

Then for all natural number n, we let

$$\delta_{\phi}^n \equiv \delta_{\phi} \delta_{\phi}^{n-1}.$$

For $\alpha > 0$ and $1 \le p < \infty$, the Besov class B_p^{α} is defined as

$$B_p^{\alpha} = \left\{ f \in L^p : \int_{-\pi}^{\pi} |\phi|^{-1-\alpha p} \|\delta_{\phi}^n f\|_p^p d\phi < \infty \right\}$$

where n is any integer such that $n > \alpha$.

A well-known theorem about the class B_p^{α} states that if $1 and <math>\alpha > 1/p$, then all functions in B_p^{α} are continuous functions, see Böttcher and Silbermann [1, p.44]. In this paper, we will use matrix methods to discuss the case when p = 2 and $\alpha = 1/2$. Our main result is the following

Theorem 1. If $f \in B_2^{\frac{1}{2}}$ is continuous at every point $t \in \mathbf{T} \setminus \{-1\}$ and both

$$f(-1+0) \equiv \lim_{\theta \to 0^+} f\left(e^{i(\pi-\theta)}\right)$$

and

$$f(-1-0) \equiv \lim_{\theta \to 0^+} f\left(e^{i(-\pi+\theta)}\right)$$

exist, then f(-1+0) = f(-1-0).

As an immediate corollary, we also prove

Theorem 2. Let f be any arbitrary complex-valued function defined on \mathbf{T} . If f is continuous at every point $t \in \mathbf{T} \setminus \{-1\}$ and both f(-1+0) and f(-1-0) exist but $f(-1+0) \neq f(-1-0)$, then

$$\sum_{k=-\infty}^{\infty} |k| |a_k[f]|^2 = \infty,$$

where $a_k[f]$ are the Fourier coefficients of f.

Before carrying out our proof, we need several definitions and lemmas.

2. Definitions and Lemmas.

Given $f \in L^1$, we define its Fourier coefficients $a_k[f]$ by

$$a_k[f] = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-ik\theta} d\theta , \quad k = 0, \pm 1, \pm 2, \cdots .$$

Let $A_n[f]$ denote the *n*-by-*n* Toeplitz matrix with the (j, ℓ) th entry given by $a_{j-\ell}[f]$. If f is real-valued, then $a_{-k}[f] = \overline{a}_k[f]$ and hence $A_n[f]$ is a Hermitian matrix. Let $C_n[f]$ be the *n*-by-*n* circulant matrix in which the (j, ℓ) th entry is given by $c_{j-\ell}[f]$ where

$$c_k[f] = \begin{cases} \frac{(n-k)a_k[f] + ka_{k-n}[f]}{n} & 0 \le k < n, \\ c_{n+k}[f] & 0 < -k < n \end{cases}$$

Clearly, $C_n[f]$ will be a Hermitian matrix if f is real-valued.

A sequence of matrices $\{M_n\}_{n=1,2,\dots}$ is said to have clustered spectra if for any $\epsilon > 0$, there exists an N > 0 such that for all $n \ge 1$, at most N eigenvalues of M_n have absolute values exceeding ϵ . As examples, we consider the following Lemmas.

Lemma 1. Let $\{M_n\}_{n=1,2,\dots}$ be a sequence of Hermitian matrices. If $\sup_n ||M_n||_F < \infty$ where $||\cdot||_F$ denotes the Frobenius norm, then $\{M_n\}$ has clustered spectra.

Proof. Since the square of the Frobenius norm of a Hermitian matrix is equal to the sum of the square of its eigenvalues, it follows that for any given $\epsilon > 0$, M_n has at most $\sup_n ||M_n||_F^2 / \epsilon^2$ eigenvalues with absolute values greater than ϵ .

Lemma 2. Let f be a real-valued continuous function on T. Then the sequence of matrices

$$\Delta_n[f] \equiv A_n[f] - C_n[f], \quad n = 0, 1, 2, \cdots$$

has clustered spectra.

Proof. See Chan and Yeung [2, Theorem 1]. \Box

Lemma 3. If f is a real-valued function in $B_2^{1/2}$, then $\{\triangle_n[f]\}$ has clustered spectra.

Proof. We first note that the space $B_2^{1/2}$ admits a very simple description, namely

$$f \in B_2^{1/2} \iff \sum_{k=-\infty}^{\infty} (|k|+1)|a_k[f]|^2 < \infty , \qquad (1)$$

see for instance, Böttcher and Silbermann [1, p.44]. Since the first row of the Hermitian Toeplitz matrix $\Delta_n[f] = A_n[f] - C_n[f]$ is given by

$$\left(0, \frac{1}{n}\left(a_{-1}[f] - a_{n-1}[f]\right), \frac{2}{n}\left(a_{-2}[f] - a_{n-2}[f]\right), \cdots, \frac{n-1}{n}\left(a_{-n+1}[f] - a_{1}[f]\right)\right),$$

we have

$$\begin{split} \|\triangle_{n}[f]\|_{F}^{2} &= 2\sum_{k=1}^{n-1} \frac{(n-k)k^{2}}{n^{2}} |a_{-k}[f] - a_{n-k}[f]|^{2} \\ &\leq 4\sum_{k=1}^{n-1} \frac{(n-k)k^{2}}{n^{2}} (|a_{-k}[f]|^{2} + |a_{n-k}[f]|^{2}) \\ &= 4\sum_{k=1}^{n-1} \left\{ \frac{(n-k)k^{2}}{n^{2}} |a_{-k}[f]|^{2} + \frac{(n-k)^{2}k}{n^{2}} |a_{k}[f]|^{2} \right\} \\ &= 4\sum_{k=1}^{n-1} \frac{n-k}{n} \cdot k |a_{k}[f]|^{2} \\ &\leq 4\sum_{k=1}^{n-1} k |a_{k}[f]|^{2} \\ &\leq 2\sum_{k=-\infty}^{\infty} (|k|+1) |a_{k}[f]|^{2} < \infty. \end{split}$$

By Lemma 1, $\{ \triangle_n[f] \}$ has clustered spectra.

Lemma 4. Let H_n be the n-by-n Hilbert matrix, i.e.

$$H_n = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & & \ddots & \vdots \\ \frac{1}{3} & & \ddots & & \vdots \\ \vdots & \ddots & & & \vdots \\ \frac{1}{n} & \cdots & \cdots & \frac{1}{2n-1} \end{bmatrix}$$

•

Then for any $\epsilon > 0$, the number of eigenvalues of H_n which exceed $\epsilon > 0$ is asymptotically equal to

$$\frac{2}{\pi}\log n \, \operatorname{sech}^{-1}\frac{\epsilon}{\pi}$$

In other words, $\{H_n\}$ does not have clustered spectra.

Proof. See Widom [3, p.31]. \Box

3. Proofs of Theorems.

Proof of Theorem 1: It is enough to prove the theorem for real-valued functions. Thus let f be a real-valued function in $B_2^{1/2}$. Assume that f is continuous at every point $t \in$ $\mathbf{T} \setminus \{-1\}$ with both $f(-1+0) = \lim_{\theta \to 0^+} f(e^{i(\pi-\theta)})$ and $f(-1-0) = \lim_{\theta \to 0^+} f(e^{i(-\pi+\theta)})$ exist, but $f(-1+0) \neq f(-1-0)$.

Define $g(e^{i\theta}) = \theta$ for all $-\pi < \theta \le \pi$ and let

$$\beta = \frac{f(-1+0) - f(-1-0)}{2\pi} \neq 0.$$

Then $f - \beta g$ is a continuous function on T. By Lemmas 3 and 2, both $\{\Delta_n[f]\}$ and $\{\Delta_n[f - \beta g]\}$ have clustered spectra. Since $g = \frac{1}{\beta} (f - (f - \beta g))$,

$$\Delta_n[g] = \frac{1}{\beta} \Delta_n[f] - \frac{1}{\beta} \Delta_n[f - \beta g]$$

and hence $\{\Delta_n[g]\}$ has clustered spectra by Cauchy's interlace theorem, see for instance Wilkinson [4, p.101].

The Fourier coefficients $a_k[g]$ of g are given by

$$a_k[g] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \theta e^{-ik\theta} d\theta = \begin{cases} 0 & k = 0, \\ \frac{(-1)^k}{k}i & k = \pm 1, \pm 2, \cdots \end{cases}$$

Therefore, for all m > 0, the first row of the 2m-by-2m Hermitian Toeplitz matrix $\triangle_{2m}[g]$ is given by

$$\left(0, \frac{1}{2m} \left(a_{-1}[g] - a_{2m-1}[g]\right), \frac{2}{2m} \left(a_{-2}[g] - a_{2m-2}[g]\right), \cdots, \frac{2m-1}{2m} \left(a_{-2m+1}[g] - a_{1}[g]\right)\right)$$

= $\left(0, \frac{1}{2m-1}i, \frac{-1}{2m-2}i, \cdots, \frac{(-1)^{k+1}}{2m-k}i, \cdots, i\right).$

$$\Delta_{2m}[g] = \begin{bmatrix} W_m & U_m \\ U_m^* & W_m \end{bmatrix}$$

where W_m and U_m are *m*-by-*m* Toeplitz matrices. Then

$$\begin{bmatrix} P_m & 0\\ 0 & Q_m \end{bmatrix} \triangle_{2m}[g] \begin{bmatrix} P_m^* & 0\\ 0 & Q_m^* \end{bmatrix} = \begin{bmatrix} P_m W_m P_m^* & P_m U_m Q_m^*\\ Q_m U_m^* P_m^* & Q_m W_m Q_m^* \end{bmatrix}$$
$$= \begin{bmatrix} P_m W_m P_m^* & H_m J_m\\ J_m H_m & Q_m W_m Q_m^* \end{bmatrix}$$

where

$$J_m = \begin{bmatrix} 0 & & & 1 \\ & & 1 & \\ & \cdot & & \\ 1 & & 0 \end{bmatrix},$$

is the *m*-by-*m* anti-identity matrix and H_m is the *m*-by-*m* Hilbert matrix. Let

$$X_{2m} = \begin{bmatrix} P_m W_m P_m^* & 0\\ 0 & Q_m W_m Q_m^* \end{bmatrix}$$

 $\quad \text{and} \quad$

$$Y_{2m} = \begin{bmatrix} 0 & H_m J_m \\ J_m H_m & 0 \end{bmatrix}$$

Then we have

L

$$\begin{bmatrix} P_m & 0\\ 0 & Q_m \end{bmatrix} \Delta_{2m}[g] \begin{bmatrix} P_m^* & 0\\ 0 & Q_m^* \end{bmatrix} = X_{2m} + Y_{2m}.$$
 (2)

Since

$$\begin{aligned} \|X_{2m}\|_F^2 &= \|P_m W_m P_m^*\|_F^2 + \|Q_m W_m Q_m^*\|_F^2 \\ &= 2\|W_m\|_F^2 = 4\sum_{k=1}^{m-1} \frac{m-k}{(2m-k)^2} \\ &\leq 4\int_0^1 \frac{1-t}{(2-t)^2} dt = 4\log 2 - 2 \;, \end{aligned}$$

 $\{X_{2m}\}\$ has clustered spectra by Lemma 1. Recall that $\{\triangle_{2m}[g]\}\$ also has clustered spectra, therefore from (2) and Cauchy's interlace theorem, $\{Y_{2m}\}\$ has clustered spectra.

Let

$$R_{2m} = \frac{1}{\sqrt{2}} \begin{bmatrix} I_m & I_m \\ J_m & -J_m \end{bmatrix}$$

where I_m is the $m \times m$ identity matrix. Clearly, $R_{2m}^* R_{2m} = I_{2m}$. Hence $\{R_{2m}^* Y_{2m} R_{2m}\}$ has clustered spectra. However,

$$R_{2m}^* Y_{2m} R_{2m} = \frac{1}{2} \begin{bmatrix} H_m & 0\\ 0 & -H_m \end{bmatrix}$$

This implies that $\{H_m\}$ has clustered spectra, a contradiction to Lemma 4.

Proof of Theorem 2: Just use (1) and Theorem 1. \Box

We finally note that since estimates of the form (1) only hold for Besov space B_p^{α} where p = 2 and $\alpha = 1/2$, the matrix method used here will not work for larger Besov spaces.

4. Acknowledgement.

We would like to thank Professors Olof Widlund and J. Marti for their valuable comments and help in the preparation of this paper.

References.

- A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990.
- R. Chan and M. Yeung, Circulant Preconditioners for Toeplitz Matrices with Positive Continuous Generating Functions, *Math. Comp.*, 58 (1992), pp. 233–240.
- [3] H. Widom, Hankel Matrices, Trans. Amer. Math. Soc., 121 (1966), pp. 1–35.
- [4] J. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.