THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 7 (November 1)

The following were discussed in the tutorial this week:

1 Infinite Limits

Definition 1. Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, and $c \in \mathbb{R}$ be a cluster point of A.

(i) We say that f tends to ∞ as $x \to c$, and write

$$
\lim_{x \to c} f = \infty,
$$

if for every $\alpha > 0$, there exists $\delta = \delta(\alpha) > 0$ such that for all $x \in A$ with $0 < |x-c| < \delta$, then $f(x) > \alpha$.

(i) We say that f tends to $-\infty$ as $x \to c$, and write

$$
\lim_{x \to c} f = -\infty,
$$

if for every $\alpha > 0$, there exists $\delta = \delta(\alpha) > 0$ such that for all $x \in A$ with $0 < |x-c| < \delta$, then $f(x) < -\alpha$.

Remark. The following are defined in a similar fashion:

$$
\lim_{x \to c^{+}} f = \infty, \quad \lim_{x \to c^{-}} f = \infty, \quad \lim_{x \to c^{+}} f = -\infty, \quad \lim_{x \to c^{-}} f = -\infty.
$$

Example 1. Evaluate the limits $\lim_{x \to 1^-}$ $\frac{x}{\sqrt{2}}$ $\overline{x} - x$ and $\lim_{x\to 1^+}$ $\frac{x}{\sqrt{2}}$ $\overline{x} - x$ using definition. What can you say about the limit $\lim_{x\to 1} \frac{1}{\sqrt{x}}$ \ddot{x} $\overline{x} - x$?

Example 2. Is there a function $f : \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to c} f(x) = \infty$ for every $c \in \mathbb{R}$.

Solution: No. Suppose there is such a function f. Then, given any $c \in \mathbb{R}$ and $M > 0$, there exists $\delta > 0$ such that $f(x) \geq M$ whenever $x \in V_{\delta}(c) \setminus \{x\}$. By shrinking the neighbourhood if necessary, we can easily deduce the following:

Claim: Suppose $a < b$. For any $M > 0$, there are α, β with $a < \alpha < \beta < b$ such that $f(x) \geq M$ whenever $x \in [\alpha, \beta]$.

Let $I_0 = [0, 1]$. By the claim, there are $0 < \alpha_1 < \beta_1 < 1$ such that

 $f(x) \geq 1$ whenever $x \in [\alpha_1, \beta_1].$

Let $I_1 := [\alpha_1, \beta_1]$. By the claim again, there are $\alpha_1 < \alpha_2 < \beta_2 < \beta_1$ such that

 $f(x) \geq 2$ whenever $x \in [\alpha_2, \beta_2]$.

Continue in this way, we can find a sequence $\{I_n\}_{n\in\mathbb{N}}$ of closed bounded intervals such that

- (i) $I_{n+1} \subset I_n$ for all $n \in \mathbb{N}$, and
- (ii) $f(x) \geq n$ for any $x \in I_n$.

By the Nested Interval Theorem, \bigcap n∈N $I_n \neq \emptyset$. Let $x_0 \in \bigcap$ n∈N I_n . Then we have $f(x_0) \geq n$ for all $n \in \mathbb{N}$, contradicting the fact that $f(x_0) \in \mathbb{R}$.

2 Limits at Infinity

Definition 2. Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. Suppose that $(a, \infty) \subset A$ for some $a \in \mathbb{R}$. We say that $L \in \mathbb{R}$ is a limit of f as $x \to \infty$, and write

$$
\lim_{x \to \infty} f = L,
$$

if given any $\varepsilon > 0$ there exists $K = K(\varepsilon) > a$ such that for any $x > K$, then $|f(x) - L| < \varepsilon$.

Remark. $\lim_{x \to -\infty} f = L$ is defined similarly.

Example 3. By virtue of definition, show that $\lim_{x\to\infty}$ √ $\frac{\sqrt{x}-x}{\sqrt{x}}$ $\overline{x}+x$ $=-1.$

Example 4. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is periodic and $\lim_{x \to \infty} f(x) = 0$, then f is identically zero.