THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050B Mathematical Analysis I

Tutorial 7 (November 1)

The following were discussed in the tutorial this week:

1 Infinite Limits

Definition 1. Let $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$, and $c \in \mathbb{R}$ be a cluster point of A.

(i) We say that f tends to ∞ as $x \to c$, and write

$$\lim_{x \to c} f = \infty,$$

if for every $\alpha > 0$, there exists $\delta = \delta(\alpha) > 0$ such that for all $x \in A$ with $0 < |x-c| < \delta$, then $f(x) > \alpha$.

(i) We say that f tends to $-\infty$ as $x \to c$, and write

$$\lim_{x \to c} f = -\infty,$$

if for every $\alpha > 0$, there exists $\delta = \delta(\alpha) > 0$ such that for all $x \in A$ with $0 < |x-c| < \delta$, then $f(x) < -\alpha$.

Remark. The following are defined in a similar fashion:

$$\lim_{x\to c^+} f = \infty, \quad \lim_{x\to c^-} f = \infty, \quad \lim_{x\to c^+} f = -\infty, \quad \lim_{x\to c^-} f = -\infty.$$

Example 1. Evaluate the limits $\lim_{x\to 1^-} \frac{x}{\sqrt{x}-x}$ and $\lim_{x\to 1^+} \frac{x}{\sqrt{x}-x}$ using definition. What can you say about the limit $\lim_{x\to 1} \frac{x}{\sqrt{x}-x}$?

Example 2. Is there a function $f: \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to c} f(x) = \infty$ for every $c \in \mathbb{R}$.

Solution: No. Suppose there is such a function f. Then, given any $c \in \mathbb{R}$ and M > 0, there exists $\delta > 0$ such that $f(x) \geq M$ whenever $x \in V_{\delta}(c) \setminus \{x\}$. By shrinking the neighbourhood if necessary, we can easily deduce the following:

Claim: Suppose a < b. For any M > 0, there are α, β with $a < \alpha < \beta < b$ such that

$$f(x) \ge M$$
 whenever $x \in [\alpha, \beta]$.

Let $I_0 = [0, 1]$. By the claim, there are $0 < \alpha_1 < \beta_1 < 1$ such that

$$f(x) \ge 1$$
 whenever $x \in [\alpha_1, \beta_1]$.

2019 Fall MATH 2050B

2

Let $I_1 := [\alpha_1, \beta_1]$. By the claim again, there are $\alpha_1 < \alpha_2 < \beta_2 < \beta_1$ such that

$$f(x) \ge 2$$
 whenever $x \in [\alpha_2, \beta_2]$.

Continue in this way, we can find a sequence $\{I_n\}_{n\in\mathbb{N}}$ of closed bounded intervals such that

- (i) $I_{n+1} \subset I_n$ for all $n \in \mathbb{N}$, and
- (ii) $f(x) \ge n$ for any $x \in I_n$.

By the Nested Interval Theorem, $\bigcap_{n\in\mathbb{N}} I_n \neq \emptyset$. Let $x_0 \in \bigcap_{n\in\mathbb{N}} I_n$. Then we have $f(x_0) \geq n$ for all $n \in \mathbb{N}$, contradicting the fact that $f(x_0) \in \mathbb{R}$.

2 Limits at Infinity

Definition 2. Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. Suppose that $(a, \infty) \subset A$ for some $a \in \mathbb{R}$. We say that $L \in \mathbb{R}$ is a **limit of** f **as** $x \to \infty$, and write

$$\lim_{x \to \infty} f = L,$$

if given any $\varepsilon > 0$ there exists $K = K(\varepsilon) > a$ such that for any x > K, then $|f(x) - L| < \varepsilon$. Remark. $\lim_{x \to -\infty} f = L$ is defined similarly.

Example 3. By virtue of definition, show that $\lim_{x\to\infty} \frac{\sqrt{x}-x}{\sqrt{x}+x} = -1$.

Example 4. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is periodic and $\lim_{x \to \infty} f(x) = 0$, then f is identically zero.