THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 5 (October 11)

The following were discussed in the tutorial this week:

1 The Cauchy Criterion

Definition 1.1. A sequence $X = (x_n)$ of real numbers is said to be a **Cauchy sequence** if for any $\varepsilon > 0$ there exists a natural number K such that

 $|x_n - x_m| < \varepsilon$ whenever $m, n \ge K$.

Example 1. Use the definition to determine whether the following sequences are Cauchy.

(a) $x_n := 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$ (b) $y_n := 1 + \frac{1}{2} + \dots + \frac{1}{n}$

Cauchy Convergence Criterion. A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Example 2. If C > 0, 0 < r < 1 and the sequence (x_n) satisfies

$$|x_{n+1} - x_n| \le Cr^n \qquad \text{for all } n \in \mathbb{N}.$$

Show that (x_n) is a Cauchy sequence.

Definition 1.2. A sequence (x_n) of real numbers is said to be **contractive** if there exists a constant r, 0 < r < 1, such that

$$|x_{n+2} - x_{n+1}| \le r|x_{n+1} - x_n| \qquad \text{for all } n \in \mathbb{N}.$$
 (#)

The number r is called the **constant** of the contractive sequence.

Remark. Do not confuse (#) with the following condition:

$$|x_{n+2} - x_{n+1}| < |x_{n+1} - x_n| \qquad \text{for all } n \in \mathbb{N}.$$
 (##)

For example, (\sqrt{n}) satisfies (##) but it is not contractive.

Theorem 1.1. Every contractive sequence is a Cauchy sequence, and therefore is convergent.

Example 3. (Sequence of Fibonacci Fractions) Consider the sequence of Fibonacci fractions $x_n := f_n/f_{n+1}$, where (f_n) is the Fibonacci sequence defined by $f_1 = f_2 = 1$ and $f_{n+2} := f_{n+1} + f_n$, $n \in \mathbb{N}$. Show that the sequence (x_n) converges to $1/\varphi$, where $\varphi := (1 + \sqrt{5})/2$ is the Golden Ratio. **Example 4.** Let (x_n) be a sequence of real numbers defined by

$$\begin{cases} x_1 = 1, & x_2 = 2, \\ x_{n+2} := \frac{1}{3}(2x_{n+1} + x_n) & \text{ for all } n \in \mathbb{N}. \end{cases}$$

Show that (x_n) is convergent and find its limit.

(**Hint:** Note that
$$x_{n+2} - x_{n+1} = (-\frac{1}{3})(x_{n+1} - x_n)$$
 and $x_{n+2} - x_1 = \sum_{k=1}^{n+1} (x_{k+1} - x_k)$.)