THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 2 (September 18, 20)

The following were discussed in the tutorial this week:

1 Applications of the Supremum Property

The Completeness Property of R. Every nonempty set of real numbers that has an upper bound also has a supremum in R.

Archimedean Property. If $x \in \mathbb{R}$, then there exists $n_x \in \mathbb{N}$ such that $x \leq n_x$.

Example 1 (Existence of $\sqrt[n]{a}$). Let $a > 0$. Show that for any $n \in \mathbb{N}$, there exists a unique positive number x such that $x^n = a$.

Solution. (Uniqueness) Clear because if $0 < a < b$, then $a^n < b^n$. (Existence) Let $S := \{s \in \mathbb{R} : s \geq 0, s^n < a\}$. Note that

- (i) $S \neq \emptyset$ since $0 \in S$;
- (ii) S is bounded above since $s > (1 + a) \implies s^n > (1 + a)^n > na > a$.

By the completeness property, S has a supremum. Let $x := \sup S$. Clearly $x \geq 0$. If we can show that $x^n = a$, then we must have $x > 0$. To prove $x^n = a$, we eliminate the cases $x^n < a$ and $x^n > a$.

We will make use of the following elementary inequality: if
$$
0 \le a \le b
$$
, then
\n
$$
b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1}) \le (b - a)nb^{n-1}.
$$

Case 1: Suppose $x^n < a$

Want: $(x + \frac{1}{x})$ $\left(\frac{1}{m}\right)^n < a$ for some large m.

Note that

$$
\left(x + \frac{1}{m}\right)^n - x^n \le \frac{1}{m}n\left(x + \frac{1}{m}\right)^{n-1} \le \frac{1}{m}n\left(x + 1\right)^{n-1}.
$$

By A.P. there exists $m \in \mathbb{N}$ such that $\frac{1}{n}$ m \lt $a - x^n$ $\frac{x}{n(x+1)^{n-1}}$. Now $0 \le x < x + \frac{1}{x}$ m and $(x +$ 1 m \setminus^n $\langle a,$ contradicting the fact that x is an upper bound of S.

Case 2: Suppose $x^n > a$

Want: $\left(x-\frac{1}{x}\right)$ $\left(\frac{1}{m}\right)^n > a$ for some large m. By A.P. there exists $m \in \mathbb{N}$ such that $\frac{1}{n}$ m \lt $x^n - a$ $rac{x^n - a}{nx^{n-1}} < x$. Then $x - \frac{1}{n}$ m > 0 , and hence $x^n - \left($ $x-\frac{1}{x}$ m \setminus^n \leq $\frac{1}{1}$ m $nx^{n-1} < x^n - a.$ Now $t > x - \frac{1}{t}$ m $\implies t^n > (x - \frac{1}{n})$ $\left(\frac{1}{m}\right)^n > a \implies t \notin S$, i.e. $t \leq x - \frac{1}{m}$ m for all $t \in S$, contradicting the fact that x is the least upper bound of S.

2 Sequences and their limits

Definition 2.1. A sequence $X = (x_n)$ in R is said to be converge to $x \in \mathbb{R}$, or x is said to be a limit of (x_n) , if for every $\varepsilon > 0$ there exists a natural number $K(\varepsilon)$ such that for all $n \geq K(\varepsilon)$, the terms x_n satisfy $|x_n - x| < \varepsilon$.

Remark. 1. The notion of limit depends only on the tail of the sequence.

- 2. " $|x_n x| < \varepsilon$ " could be replaced by " $|x_n x| \leq \varepsilon$ ".
- 3. The definition does not tell you how to find the limit. One need to make a guess first, then verify using the definition.
- 4. Notations: $\lim X = x$, $\lim(x_n) = x$, $\lim_n x_n = x$, $\lim_{n \to \infty} x_n = x$.

Example 2. Use the definition of the limit of a sequence to show $\lim_{n \to \infty} \left(\frac{n^2 - n}{2n^2 + 3} \right)$ = 1 2 .

Solution.

1. Fix an arbitrary $\varepsilon > 0$. It cannot be changed once fixed.

Let $\varepsilon > 0$ be given.

2. Find a useful estimate for $|x_n - x|$.

For $n \geq 1$,

$$
\left| \frac{n^2 - n}{2n^2 + 3} - \frac{1}{2} \right| = \left| \frac{2n^2 - 2n - 2n^2 - 3}{2(2n^2 + 3)} \right| = \frac{2n + 3}{2(2n^2 + 3)}
$$

$$
\leq \frac{2n + 3}{n^2}
$$

$$
\leq \frac{2n + 3n}{n^2} = \frac{5}{n}.
$$

Do not try to solve $\frac{2n+3}{2(2n+3)}$ $\frac{2n+8}{2(2n^2+3)} < \varepsilon$ directly. \blacktriangleleft

Let $K := \lfloor 5/\varepsilon \rfloor + 1.$

4. Complete the argument.

Now, for all $n \geq K$, we have

$$
\left|\frac{n^2 - n}{2n^2 + 3} - \frac{1}{2}\right| \le \frac{5}{n} \le \frac{5}{K} < \varepsilon.
$$

Example 3. If $\lim(x_n) = x$ and $x \neq 0$, show that there exists a natural number K such that if $n \geq K$, then $\frac{1}{2}|x| \leq |x_n| \leq 2|x|$.

Solution. Let $\varepsilon_0 := |x|/2 > 0$. Since $\lim(x_n) = x$, there exists $K \in \mathbb{N}$ such that

$$
|x_n - x| < \varepsilon = \frac{|x|}{2} \qquad \text{for } n \ge K.
$$

For $n \geq K$, by the triangle inequality, we have

$$
\begin{cases} |x_n| \le |x_n - x| + |x| < \frac{|x|}{2} + |x| \le 2|x|, \\ |x_n| \ge |x| - |x_n - x| > |x| - \frac{|x|}{2} = \frac{|x|}{2}. \end{cases}
$$

Hence $\frac{1}{2}$ $\frac{1}{2}|x| \le |x_n| \le 2|x|$ for $n \ge K$.

 \blacktriangleleft