THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 2 (September 18, 20)

The following were discussed in the tutorial this week:

1 Applications of the Supremum Property

The Completeness Property of \mathbb{R} . Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R} .

Archimedean Property. If $x \in \mathbb{R}$, then there exists $n_x \in \mathbb{N}$ such that $x \leq n_x$.

Example 1 (Existence of $\sqrt[n]{a}$). Let a > 0. Show that for any $n \in \mathbb{N}$, there exists a unique positive number x such that $x^n = a$.

Solution. (Uniqueness) Clear because if 0 < a < b, then $a^n < b^n$. (Existence) Let $S := \{s \in \mathbb{R} : s \ge 0, s^n < a\}$. Note that

- (i) $S \neq \emptyset$ since $0 \in S$;
- (ii) S is bounded above since $s > (1+a) \implies s^n > (1+a)^n > na > a$.

By the completeness property, S has a supremum. Let $x := \sup S$. Clearly $x \ge 0$. If we can show that $x^n = a$, then we must have x > 0. To prove $x^n = a$, we eliminate the cases $x^n < a$ and $x^n > a$.

We will make use of the following elementary inequality: if
$$0 \le a \le b$$
, then
 $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1}) \le (b - a)nb^{n-1}.$

Case 1: Suppose $x^n < a$

Want: $\left(x + \frac{1}{m}\right)^n < a$ for some large m.

Note that

$$\left(x+\frac{1}{m}\right)^n - x^n \le \frac{1}{m}n\left(x+\frac{1}{m}\right)^{n-1} \le \frac{1}{m}n\left(x+1\right)^{n-1}.$$

By A.P. there exists $m \in \mathbb{N}$ such that $\frac{1}{m} < \frac{a - x^n}{n(x+1)^{n-1}}$. Now $0 \le x < x + \frac{1}{m}$ and $\left(x + \frac{1}{m}\right)^n < a$, contradicting the fact that x is an upper bound of S. Case 2: Suppose $x^n > a$

Want: $\left(x - \frac{1}{m}\right)^n > a$ for some large m. By A.P. there exists $m \in \mathbb{N}$ such that $\frac{1}{m} < \frac{x^n - a}{nx^{n-1}} < x$. Then $x - \frac{1}{m} > 0$, and hence $x^n - \left(x - \frac{1}{m}\right)^n \le \frac{1}{m}nx^{n-1} < x^n - a$. Now $t > x - \frac{1}{m} \implies t^n > \left(x - \frac{1}{m}\right)^n > a \implies t \notin S$, i.e. $t \le x - \frac{1}{m}$ for all $t \in S$, contradicting the fact that x is the least upper bound of S.

2 Sequences and their limits

Definition 2.1. A sequence $X = (x_n)$ in \mathbb{R} is said to be converge to $x \in \mathbb{R}$, or x is said to be a limit of (x_n) , if for every $\varepsilon > 0$ there exists a natural number $K(\varepsilon)$ such that for all $n \ge K(\varepsilon)$, the terms x_n satisfy $|x_n - x| < \varepsilon$.

Remark. 1. The notion of limit depends only on the tail of the sequence.

- 2. " $|x_n x| < \varepsilon$ " could be replaced by " $|x_n x| \le \varepsilon$ ".
- 3. The definition does not tell you how to find the limit. One need to make a guess first, then verify using the definition.
- 4. Notations: $\lim X = x$, $\lim(x_n) = x$, $\lim_n x_n = x$, $\lim_{n \to \infty} x_n = x$.

Example 2. Use the definition of the limit of a sequence to show $\lim \left(\frac{n^2 - n}{2n^2 + 3}\right) = \frac{1}{2}$.

Solution.

1. Fix an arbitrary $\varepsilon > 0$. It cannot be changed once fixed.

Let $\varepsilon > 0$ be given.

2. Find a useful estimate for $|x_n - x|$.

For $n \geq 1$,

$$\begin{aligned} \left| \frac{n^2 - n}{2n^2 + 3} - \frac{1}{2} \right| &= \left| \frac{2n^2 - 2n - 2n^2 - 3}{2(2n^2 + 3)} \right| = \frac{2n + 3}{2(2n^2 + 3)} \\ &\leq \frac{2n + 3}{n^2} \\ &\leq \frac{2n + 3n}{n^2} = \frac{5}{n}. \end{aligned}$$

Do not try to solve $\frac{2n+3}{2(2n^2+3)} < \varepsilon$ directly.

Let $K := \lfloor 5/\varepsilon \rfloor + 1$.

4. Complete the argument.

Now, for all $n \geq K$, we have

$$\left|\frac{n^2-n}{2n^2+3}-\frac{1}{2}\right| \leq \frac{5}{n} \leq \frac{5}{K} < \varepsilon.$$

Example 3. If $\lim(x_n) = x$ and $x \neq 0$, show that there exists a natural number K such that if $n \geq K$, then $\frac{1}{2}|x| \leq |x_n| \leq 2|x|$.

Solution. Let $\varepsilon_0 := |x|/2 > 0$. Since $\lim(x_n) = x$, there exists $K \in \mathbb{N}$ such that

$$|x_n - x| < \varepsilon = \frac{|x|}{2}$$
 for $n \ge K$.

For $n \geq K$, by the triangle inequality, we have

$$\begin{cases} |x_n| \le |x_n - x| + |x| < \frac{|x|}{2} + |x| \le 2|x|, \\ |x_n| \ge |x| - |x_n - x| > |x| - \frac{|x|}{2} = \frac{|x|}{2}. \end{cases}$$

Hence $\frac{1}{2}|x| \le |x_n| \le 2|x|$ for $n \ge K$.