Series

Series

\nLet
$$
\sum_{n=1}^{\infty} a_n
$$
 be a "formed series" : *How* we have an common with two sequences (An) , (sn)

\nof real numbers with $sn = a_1 + \cdots + a_n = \sum_{i=1}^{\infty} a_i$. (1)

\nThis series is said to be computed with $\lim_{n \to \infty} s_n$ exists in \mathbb{R} ;

\nin this case $\sum_{i=1}^{\infty} a_i$ with also the need to denote $\frac{1}{n}$.

\nThus, 1 in $sn = \lim_{n \to \infty} \sum_{i=1}^{\infty} a_i$. (At's sum of the sums $\sum_{i=1}^{\infty} a_i$)

\nSubstituting all the values of \mathbb{R} and \mathbb{R} is equal to \mathbb{R} ;

\nSubstituting \mathbb{R} and \mathbb{R} for \mathbb{R} ;

\nso that \mathbb{R} is an odd, and \mathbb{R} for \mathbb{R} ;

\nso that \mathbb{R} is an odd, and \mathbb{R} for \mathbb{R} ;

\nso that \mathbb{R} is an odd, and \mathbb{R} for \mathbb{R} ;

\nso that \mathbb{R} is an odd, and \mathbb{R} for \mathbb{R} ;

\nand \mathbb{R} is an odd, and \mathbb{R} for \mathbb{R} ;

\nand \mathbb{R} is an odd, and \mathbb{R} for \mathbb{R} ;

\nand \mathbb{R} is an odd, and \mathbb{R} for \mathbb{R} ;

\nand \mathbb{R} is an odd, and \mathbb{R} ;

\nand \mathbb{R} is an odd, and \mathbb{R} ;

\nand \mathbb{R} is an odd, and \mathbb{R} ;

\nand <

(tn) converges and so is Converge, let 270.
\nThus 3 we x 1x 1x 2x 3x 3x 4x 4x 5
\n
$$
lim_{x \to n+1} x(x + y + n) = x
$$
\nand consequently $\frac{m}{1-m+1}$
\nand
\n
$$
lim_{x \to n+1} x(x + y + n) = x
$$
\nand
\n
$$
lim_{x \to n+1} x(x + y + n) = x
$$
\nby symmetry. This shows that (s, 1) to Cauchy
\nand (s, converges in R, This means that
\nand so converges in R, This means that
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1) = 0
$$
\n
$$
lim_{x \to 1} x(x + a_1)
$$

 $\label{eq:1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty} \frac{dx}{(x^2+y^2)^2} \,dx = \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty} \frac{dx}{(x^2+y^2)^2} \,dx$

Ex. Let re(c, 1): Then
$$
\frac{a}{2}r^n = \frac{1}{1-r}
$$
 a $\frac{a}{2r}r^n = \frac{r}{1-r}$.

\nTherefore, $A\left(R_0t; o\int R_0ot \{esk\}\right)$, Let $0\leq a_1r$ then the series $z = a_1 \cdot \frac{a_1r}{a_1} + \cdots + a_n \leq a_nr$ for all n and n is r : 1 and $a_n < 1$:

\n(i) r : $=$ $\lim_{a_n} \frac{a_n}{a_n} < 1$.

\nProof. (i), Let $c \in (r, 1)$, 7 for all $n \in \mathbb{N}$ is t .

\n $\lim_{a_n} \frac{a_{n+1}}{a_n} < c$ $\forall n \geq N$ ($p!$. 5 apply resom). Hence $a_{N+1} < c a_{N-1}$

\n $\lim_{a_n} \frac{a_{n+2}}{s} < a_{N+1} < c^2 a_N$ and inductively. $a_{N+1} < c^3 a_N$ $Vj \in \mathbb{N}$.

\nSince $\frac{a_1}{s}c^3 < t \approx (p! \cdot \frac{a_1}{p!}p! \cdot \frac{a_1}{s} - a_{N+1} < t \approx 0$.

\nApplication for Corotcative Aeg, $\frac{a_1}{s} < t \approx 0$.

\nApplication for Corotcative Aeg, $\frac{a_1}{s} < t < 0$.) so t .

\n11. $1 + 2 - 1 + 1 \leq c \mid x_{n+1} - x_n \mid \forall n \in \mathbb{N}$.

\n12. $1 + 2 - 1 + 1 \leq c \mid x_{n+1} - x_n \mid \forall n \in \mathbb{N}$.

\n13. $1 + 2 - 1 + 1 \leq c \mid x_{n+1} - x_n \mid \forall n \in \mathbb{N}$.

\

$$
\int_{\frac{1}{2}} |f_{xy} \chi_{n} \exp\{-\frac{1}{2} \int_{\frac{1}{2}} f_{xy} \chi_{n} \right] \leq \int_{\frac{1}{2}} f_{xy} \int_{\
$$

 $\hat{\mathcal{A}}$

$$
\begin{aligned}\n&\left(-\frac{1}{2}\right)x^{2} + \frac{1}{2}x^{2} + \cdots + \frac{1}{2^{n-1}}x^{n-1}\right) \\
&\geq 1 + \left(-\frac{1}{2}\right)x^{2} + \cdots + \left(-\frac{1}{2^{n-1}}x^{2} + \cdots + \frac{1}{2^{n-1}}x^{2} + \cdots + \frac{1}{2^{n-1}}
$$

Note can show
$$
ln \int_{n}^{n} \int_{s}^{s} P_{i} = |im P_{n} exists|
$$

\n $lin R$), Indeed, writing
\n $ln = 2 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \dots + \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \dots (1 - \frac{n-2}{n})$
\n $(n + 1) + 3!$
\n $+ \frac{1}{n!} (1 - \frac{1}{n}) - \dots (1 - \frac{n-1}{n})$

$$
P_{n+1} = 2 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+2} \right) + \frac{1}{(n-1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdots \left(1 - \frac{n-2}{n+1} \right)
$$

+
$$
\frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \cdots \left(1 - \frac{n-1}{n+1} \right) \left(1 - \frac{n-1}{n+1} \right) \left(1 - \frac{n-1}{n+1} \right)
$$

$$
\left(n+1 \max_{\text{minus}} \min_{\text{minus}} \text{with each of the first n. This is}
$$

dominkting that in the expansion of P_n