MATH2050B 1920 Quiz 1

TA's solutions¹ to selected problems

Q1. Give definition and its negation for each of the following:

- (i) (x_n) converges to $x \in \mathbb{R}$)
- (ii) (x_n) converges to $-\infty$
- (iii) (x_n) is Cauchy (a Cauchy sequence)

Solution.

- (i) **Definition:** $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $|x_n x| < \epsilon$ for all n > N. **Negation:** $\exists \epsilon > 0$ such that $\forall N \in \mathbb{N}, \exists n > N$ with $|x_n - x| \ge \epsilon$.
- (ii) **Definition:** $\forall M \in \mathbb{R}, \exists N \in \mathbb{N} \text{ such that } x_n < M \text{ for all } n > N.$ **Negation:** $\exists M \in \mathbb{R} \text{ such that } \forall N \in \mathbb{N}, \exists n > N \text{ with } x_n \geq M.$
- (iii) **Definition:** $\forall \epsilon > 0, \exists N \in \mathbb{R}$ such that $|x_n x_m| < \epsilon$ for all n, m > N. **Negation:** $\exists \epsilon > 0$ such that $\forall N \in \mathbb{N}, \exists n, m > N$ with $|x_n - x_m| \ge \epsilon$.

Q2. State (without proof):

- (i) Monotone Convergence Theorem
- (ii) Order-Preserving Theorem and Squeeze Theorem for sequences
- (iii) Nested Interval Theorem
- (iv) Bolzano-Weierstrass Theorem
- (v) Cauchy Criterion Theorem

Solution. Let $(x_n), (y_n), (z_n)$ be sequences of real numbers

- (i) Suppose that (x_n) is bounded and is monotone, then (x_n) is convergent. Moreover if (x_n) is increasing, then $\lim x_n = \sup\{x_n : n = 1, 2, ...\}$. (respectively for decreasing sequence)
- (ii) (Order-preserving theorem)Suppose that (x_n) (y_n) are convergent and x_n ≤ y_n for all n. Then lim x_n ≤ lim y_n.
 (Squeeze Theorem)Suppose that (x_n) and (y_n) are convergent with x_n ≤ z_n ≤ y_n and lim x_n = lim y_n = L. Then z_n is convergent and lim z_n = L.
- (iii) Suppose that I_n 's are intervals, $I_n = [a_n, b_n]$ such that $I_1 \supset I_2 \supset I_3 \supset \ldots$, then $\bigcap I_n \neq \emptyset$.
- (iv) A bounded sequence has a convergent subsequence.
- (v) A sequence is convergent iff it is Cauchy.

¹please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.

Q3. Use the definition in ϵ -N terminology, show:

(i) If $\lim x_n = x \in \mathbb{R}$, $\lim y_n = y \ (y_n, y \in \mathbb{R} \setminus \{0\} \forall n)$ then

$$\lim \frac{x_n}{y_n} = \frac{x}{y}.$$

(ii) If $\lim a_n = 3$, then $\lim \frac{a_n^2 + 1}{a_n - 2} = 10$.

Solution. (i): We claim that there is N so that $\left|\frac{1}{y_n}\right| \le \left|\frac{2}{y}\right|$ for all n > N.

Since $|\frac{y}{2}| > 0$, so there is N such that $|y_n - y| < |\frac{y}{2}|$ for all n > N. By triangle inequality, $|y| - |y_n| \le |y_n - y| \le |\frac{y}{2}|$. So for all n > N:

$$|\frac{y}{2}| \le |y_n|.$$

Hence the claim is proved. Next we claim that x_n/y_n is convergent to x/y:

Let $\epsilon > 0$, by convergence of (x_n) and (y_n) , there is $M \in \mathbb{N}$ such that for all n > M:

$$|x_n - x| < \frac{\epsilon}{2} \frac{|y|}{2}$$

and

$$|y_n - y| < \frac{\epsilon}{2} \frac{|y|^2}{2|x| + 1}.$$

Hence for all $n > \max(N, M)$:

$$\begin{aligned} \frac{x_n}{y_n} - \frac{x}{y} &| = |\frac{x_n y - xy_n}{y_n y}| \\ &= |\frac{x_n y - xy + xy - xy_n}{y_n y}| \\ &\leq \frac{|y| \cdot |x_n - x|}{|y_n y|} + \frac{|x| \cdot |y_n - y|}{|y_n y|} \\ &\leq \frac{2}{|y|} |x_n - x| + \frac{2|x|}{|y|^2} |y_n - y| \\ &< \epsilon. \end{aligned}$$

(*ii*): First observe

$$\left|\frac{a_n^2+1}{a_n-2}-10\right| = \left|\frac{a_n^2-10a_n+21}{a_n-2}\right| = \left|\frac{(a_n-7)(a_n-3)}{a_n-2}\right|.$$

Because $a_n \to 3$, so $a_n - 2 \to 1$. (Easy to see using definition) By a similar argument as in (i), there is N so that for all n > N:

$$\frac{1}{|a_n - 2|} \le \frac{2}{1} = 2.$$

Because (a_n) is convergent, it is also bounded, say M > 0 is a bound for (a_n) , i.e. $-M < a_n < M$ for all n.

We show that $\frac{a_n^2+1}{a_n-2}$ converges to 10:

Let $\epsilon > 0$. Consider the positive number $\epsilon \frac{1}{2(M+7)}$. Then there is N_1 such that

$$|a_n - 3| < \epsilon \frac{1}{2(M+7)}.$$

Now, for all $n > \max(N_1, N)$:

$$\begin{aligned} |\frac{a_n^2 + 1}{a_n - 2} - 10| &= |\frac{(a_n - 7)(a_n - 3)}{a_n - 2}| \\ &\leq \frac{(|a_n| + 7)|a_n - 3|}{|a_n - 2|} \\ &< 2(M + 7)\frac{\epsilon}{2(M + 7)} = \epsilon. \end{aligned}$$

Q4.

- (i) Let $a_n = n^{1/n}$ (so $a_n^n = n$). Find the limit of (a_n) . (Hint. Set $b_n = n^{1/n} 1$ and make use of the Binomial Theorem)
- (ii) Let $x_{n+1} = \frac{1}{3}x_n + 5 \forall n \in \mathbb{N}$ and let $x_1 = 3$. Show that $\lim x_n$ exists and find its value.

Solution. (i): Let $b_n = a_n - 1$. Then $b_n \ge 0$ for all n and for all $n \ge 2$:

$$n = (b_n + 1)^n \ge {\binom{n}{2}}b_n^2 = \frac{n(n-1)}{2}b_n^2,$$

so that

$$\sqrt{\frac{2}{n-1}} \ge b_n \ge 0.$$

Apply the Squeeze Theorem (see **Q2**) to $x_n = 0$, $z_n = b_n$, $y_n = \sqrt{2/(n-1)}$, we get $\lim b_n$ exists and equals 0. Hence $a_n = b_n + 1$ converges to 1.

(*ii*): We are going to show by induction that $x_n < 15/2$ and x_n is increasing.

One finds that $x_2 = 6$. So $x_2 < 15/2$ and $x_2 - x_1 > 0$. Suppose that $x_N < 15/2$ and $x_N > x_{N-1}$, then

$$x_{N+1} = \frac{1}{3}x_N + 5 \le \frac{1}{3}\frac{15}{2} + 5 = \frac{15}{2}$$

and

$$x_{N+1} - x_N = 5 - \frac{2}{3}x_N > 5 - \frac{2}{3}\frac{15}{2} = 0.$$

Hence the claim is proved by induction. Since (x_n) is bounded and monotone, by Monotone Convergence Theorem, (x_n) is convergent.

Let $x = \lim x_n$. Since $x_{n+1} = \frac{1}{3}x_n + 5$, so

$$x = \frac{1}{3}x + 5$$

and hence x = 15/2.