
MATH2050B 1920 HW4
TA’s solutions to selected problems

Q1. Let x(1) = 8 and x(n + 1) := 2 + x(n)/2. Show the sequence is decreasing and positive
and hence converges. Find the limit.

Solution. We are going to show by induction that x(n) is decreasing and x(n) > 4 for every
n.

One computes x(2) = 6. So x(1) ≥ x(2) ≥ 4. Suppose now x(1) ≥ x(2) ≥ · · · ≥ x(N) > 4. One
computes x(N + 1) = 2 + x(N)/2 > 2 + 4/2 = 4, and x(N)− x(N + 1) = x(N)/2− 2 > 0. By
MI we conclude x(n) is decreasing and x(n) > 4 for every n.

The sequence x(n) is decreasing and bounded below, hence (by MCT) is convergent. Let
x = limn→∞ x(n). Using the relation x(n+ 1) = 2 + x(n)/2 we have x = 2 + x/2, so x = 4.

Q2. Let f(x) = 2−1/x for each positive x > 1. Show that f(x) < x and hence that the sequence
x(n) defined in Q2 of Section 3.3 is decreasing to limit 1: x(1) > 1 and x(n+ 1) = 2− 1/x(n).

Solution. Since x + 1
x − 2 = (

√
x − 1√

x
)2 > 0 for x > 1, so f(x) < x. Using this, we see that

x(n+ 1) ≤ x(n) for all n, so that x(n) is decreasing.

We claim that x(n) is bounded below by 1: x(1) > 1 is by definition. Suppose that x(1), . . . , x(N) >
1, then 1/x(N) < 1, so x(N + 1) = 2− 1/x(N) > 2− 1 = 1. The claim is concluded by MI.

By MCT x(n) is convergent to a real number x. Using x(n+1) = 2−1/x(n), we have x = 2−1/x.
This gives x = 1.

Q3. Let g(x) be defined by

g(x) = 1 +
√
x− 1, ∀x ∈ [2,∞).

Show that g(x) is dominated by x and that the sequence x(n) defined by x(1) ∈ [2,∞) and
x(n+ 1) = g(x(n)) is decreasing. Find its limit.

Solution. The sentence ”g(x) is dominated by x” means ”g(x) ≤ x” (where x ∈ [2,∞)). So
we need to show

1 +
√
x− 1 ≤ x, ∀x ≥ 2.

This inequality holds iff
√
x− 1 ≤ x− 1 for all x ≥ 2 iff x− 1 ≤ (x− 1)2 for all x ≥ 2 iff y ≤ y2

for all y ≥ 1. Because the inequality ”y ≤ y2 for all y ≥ 1” holds, therefore g(x) ≤ x, for all
x ≥ 2.

Let x(1) be any number ≥ 2. Then x(2) = g(x(1)) ≤ x(1) because g(x) ≤ x. Inductively
x(n+ 1) ≤ x(n) for all n, so that x(n) is decreasing. Notice the range of g is [2,∞), so x(n) is
bounded below by 2. By MCT x(n)→ x for some real x. Using x(n+ 1) = 1 +

√
x(n)− 1 we

have
x = 1 +

√
x− 1.

Solving this equation gives x = 2.

Q4. Let x1 = 1 and xn+1 =
√

2 + xn for all n. Show that xn is increasing and bounded above
by 1 +

√
2. Find the limit if exists.

Solution. It is clear that
√

3 = x2 ≥ x1 = 1. Suppose that xN ≥ xN−1. Then xN + 2 ≥
xN−1 + 2, and so xN+1 ≥ xN . By MI, xn is increasing.
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To show xn is bounded by 1 +
√

2, note x1 is clearly bounded by 1 +
√

2. Suppose that
xN ≤ 1 +

√
2, then

xN + 2 ≤ 1 +
√

2 + 2 ≤ (1 +
√

2)2,

so that xN+1 ≤ 1 +
√

2. By MI xn ≤ 1 +
√

2 for all n.

Q5. Let p > 0 and y1 =
√
p, yn+1 =

√
p+ yn. Show that yn is increasing and bounded by

1 +
√
p. Find the limit if exists.

Solution. The method is the same as Q4.

Q6. Let a, z1 > 0, and zn+1 =
√
a+ zn for all n. Show that

zn ≤ max{1, z1}+
√
a, ∀n ∈ N.

Show that zn is monotone, so that the limit exists.

Solution. Let M = max{1, z1}. Then z1 ≤M +
√
a. Suppose that zN ≤M +

√
a. Then

zN ≤M +
√
a,

so that
zN + a ≤M + a+

√
a ≤ (M +

√
a)2.

Therefore zN+1 ≤M +
√
a. By MI, zn ≤M +

√
a for all n.

To show zn is monotone,

Case 1. z1 ≥ z2. In this case, suppose that zN−1 ≥ zN . Then

zN−1 + a ≥ zN + a

so that zN ≥ zN+1. By MI zn is decreasing.

Case 2. z1 ≤ z2. Similar to Case 1, zn is increasing in this case.

Q7. Let x1 = a > 0, and xn+1 = xn + 1
xn

. Then xn is increasing, with x = limxn ≤ ∞. Show
that x =∞.

Solution. Note that x2 = x1 + 1
x1
≥ x1, and in general xn+1 = xn + 1

xn
≥ xn. So xn is

increasing by MI.

The set {xn : n = 1, 2, . . . } is either bounded or unbounded. If it is bounded, then x = limxn <
∞. If it is unbounded, then x =∞. So x ≤ ∞.

If x is finite. Since 0 < x1 ≤ x, so x 6= 0. Take limit on both sides in xn+1 = xn + 1
xn

,

x = x+
1

x
.

This will give a contradiction. So x =∞.

Q8. Let ∅ 6= A ⊂ R, bounded with x := supA ∈ R. Show that there is a sequence (xn)
in A such that limn xn = x. Moreover, if x /∈ A show that you can have your (xn) satisfying
additionally that xn < xn+1 for all n.

Solution. If x ∈ A, we simply take xn = x for all n.
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Assume x /∈ A.

Let δ0 > 0. There is x1 ∈ A so that

x > x1 > x− δ0.

Because x /∈ A, so the number δ1 := min(x− x1, 11) is positive.

There is x2 ∈ A so that
x > x2 > x− δ1.

Note that x2 > x1. The number δ2 := min(x− x2, 12) is positive, so there is x3 ∈ A so that

x > x3 > x− δ2.

Note x3 > x2. To repeat the same step, we can inductively define xn so that xn is strictly
increasing and x− xn ≤ 1

n . This shows xn → x.

Q9. Let (an) be a bounded sequence, and

tn = inf{am : m ≥ n} = inf{an, an+1, an+2, . . . },

sn = sup{am : m ≥ n} = sup{an, an+1, an+2, . . . }.

Show that (tn), (sn) are monotone and

lim
n
tn = sup{tn : n ∈ N} ≤ inf{sk : k ∈ N} = lim

k
sk.

Solution. For each n, tn ≤ am for all m ≥ n. In particular, tn ≤ am for all m ≥ n+ 1, and so

tn ≤ inf{am : m ≥ n+ 1} = tn+1.

This shows that (tn) is increasing.

For each n, sn ≥ am for all m ≥ n. In particular, sn ≥ am for all m ≥ n+ 1, and so

sn ≥ sup{am : m ≥ n+ 1} = sn+1.

This shows that (sn) is decreasing.

Since (an) is bounded, so (tn) and (sn) are also bounded. By MCT, limn tn exists, limn tn =
sup{tn : n ∈ N}, and limn sn exists, limn sn = inf{sn : n ∈ N}. Because tn ≤ sn for all n, it
follows also limn tn ≤ limn sn.

Q10. Let (an), (tn), (sn) be as in Q9. Show that (an) converges iff limn tn = limn sn.

(limn tn is usually denoted by lim infn an. limn sn is usually denoted by lim supn an.)

Solution. (⇒)Suppose that (an) is convergent to a ∈ R. We claim that limn tn = limn sn = a.

Let ε > 0, then there is N so that |an − a| < ε for all n ≥ N . This is to say for all n ≥ N ,

a− ε < an < a+ ε.

It follows that for all n ≥ N , a− ε ≤ tn ≤ a + ε and a− ε ≤ sn ≤ a + ε. This implies that for
all n ≥ N , |tn − a| ≤ ε and |sn − a| ≤ ε, which shows the claim.
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(⇐) Suppose that limn tn = limn sn = a ∈ R. We claim that an converges to a. Let ε > 0.
Then there is N so that for all n ≥ N ,

a− ε < tn < a+ ε

and
a− ε < sn < a+ ε.

This two conditions imply that for all n ≥ N , a − ε < an < a + ε. Hence limn an exists and
equals a.
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