THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 8 (March 25)

Let $\emptyset \neq E \subseteq \mathbb{R}$.

Definition. A collection U of nondegenerate intervals is said to be a **Vitali cover** of E if for every $x \in E$, for any $\varepsilon > 0$, there is $I \in \mathcal{U}$ such that $x \in I$ and $\ell(I) < \varepsilon$.

Remark. Suppose U is a Vitali cover of E.

(1) Then $\{\overline{I}: I \in \mathcal{U}\}\$ is also a Vitali cover of E.

(2) If G is open and $E \subseteq G$, then $\{I \in \mathcal{U} : I \subseteq G\}$ is a Vitali cover of E.

Vitali Covering Lemma. Suppose $m^*(E) < +\infty$. Let U be a Vitali cover of E. Then for any $\gamma > 0$, there are disjoint $I_1, I_2, \ldots, I_N \in \mathcal{U}$ such that

$$
m^* \left(E \setminus \bigcup_{n=1}^N I_n \right) < \gamma.
$$

Remark. (1) E need not be measurable.

- (2) The result need not hold when $m^*(E) = +\infty$. For example, $\mathcal{U} \coloneqq \{[x, x+r] : x \in$ $\mathbb{R}, 0 < r < 1$ is a Vitali cover of \mathbb{R} but $m^*(\mathbb{R} \setminus \bigcup_{n=1}^N I_n) = +\infty$ for any finite subcollection $\{I_1, \ldots, I_N\}$ of \mathcal{U} .
- (3) In the proof, we actually find a countable disjoint subcollection $\{I_n\}_{n=1}^{\infty} \subseteq \mathcal{U}$ such that for some N ,

$$
E \subseteq \bigcup_{n=1}^{N} I_n \cup \bigcup_{n=N+1}^{\infty} \widehat{I}_n
$$

and

$$
\sum_{n=N+1}^{\infty} \ell(\widehat{I}_n) < \varepsilon,
$$

where \widehat{I}_n is the interval with the same centre as I_n and $\ell(\widehat{I}_n) = 5\ell(I_n)$.

Example 1. Let E be a union (not necessarily countable) of nondegenerate intervals (open, closed, half open and half closed, infinite, etc). Show that E is measurable.

Solution. Write $E = \bigcup_{\alpha \in A} I_{\alpha}$, where A is an index set, and I_{α} is a nondegenerate interval. Let

$$
\mathcal{U} = \{ [a, b] : a < b, [a, b] \subseteq I_{\alpha}, \exists \alpha \in \mathcal{A} \}.
$$

Then U is a Vitali cover of E. Let $\varepsilon > 0$. By Vitali Covering Lemma, there are disjoint $I_1, I_2, \ldots, I_N \in \mathcal{U}$ such that $m^*(E \setminus \bigcup_{n=1}^N I_n) < \varepsilon$. Since each I_n is closed and contained in E, so is the finite union $\bigcup_{n=1}^{N} I_n$ Now E is measurable by Littlewood's 1st principle. \blacktriangleleft Vitali Covering Theorem. Let $m^*(E) < \infty$. Let U be a Vitali cover of E. Then there exists a countable disjoint subcollection $\{I_n\}_{n=1}^{\infty} \subseteq \mathcal{U}$ such that

$$
m^* \left(E \setminus \bigcup_{n=1}^{\infty} I_n \right) = 0.
$$

Remark. The assumption " $m^*(E) < +\infty$ " can be dropped by considering the Vitali cover $\mathcal{U}_n \coloneqq \{I \in \mathcal{U} : I \subseteq (n, n+1)\}\$ of $E \cap (n, n+1)$ for $n \in \mathbb{Z}$.

Proof. Assume that each interval in U is closed. By Vitali Covering Lemma, there exist disjoint $\{I_i^{(1)}\}$ $j_j^{(1)}: 1 \leq j \leq m_1$ $\subseteq \mathcal{U}$ such that

$$
m^* \left(E \setminus \bigcup_{j=1}^{m_1} I_j^{(1)} \right) < \frac{1}{2}.
$$

If $E \backslash \bigcup_{j=1}^{m_1} I_j^{(1)}$ $j^{(1)} \neq \emptyset$, then $\mathcal{V}_1 \coloneqq \{I \in \mathcal{U} : I \subseteq \mathbb{R} \setminus \bigcup_{j=1}^{m_1} I_j^{(1)}\}$ ${j⁽¹⁾ \choose j}$ is a Vitali cover of $E \setminus \bigcup_{j=1}^{m_1} I_j^{(1)}$ $\frac{1}{j}$, and hence, by Vitali Covering Lemma, there exist disjoint $\{I_i^{(2)}\}$ $j_j^{(2)}$: $1 \leq j \leq m_2$ $\subseteq \mathcal{V}_1$ such that

$$
m^* \left((E \setminus \bigcup_{k=1}^2 \bigcup_{j=1}^{m_k} I_j^{(k)}) \right) = m^* \left((E \setminus \bigcup_{j=1}^{m_1} I_j^{(1)}) \setminus \bigcup_{j=1}^{m_2} I_j^{(2)} \right) < \frac{1}{2^2}.
$$

Continue in this way, we obtain a countable disjoint subcollection

$$
\{I_n\}_{n=1}^{\infty} := \{I_j^{(k)} : 1 \le j \le m_k, \ k \in \mathbb{N}\} \subseteq \mathcal{U}
$$

such that

$$
m^* \left(E \setminus \bigcup_{n=1}^{\infty} I_n \right) < \frac{1}{2^m} \qquad \text{for all } m \in \mathbb{N}.
$$

Hence $m^*(E \setminus \bigcup_{n=1}^{\infty} I_n) = 0.$

Example 2. Let $E \subseteq \mathbb{R}$, and let $f : E \to \mathbb{R}$ be a function (not necessarily measurable). For $\alpha > 0$, define

 $E_{\alpha} = \{x \in E : f'(x) \text{ exists and } |f'(x)| < \alpha\}.$

Show that $m^*(f(E_\alpha)) \leq \alpha m^*(E_\alpha)$.

Solution. We may assume that $m^*(E_\alpha) < +\infty$. Let $\varepsilon > 0$. Choose an open $G \supseteq E_\alpha$ such that $m(G) < m^*(E_\alpha) + \varepsilon$. Note that for any $x \in E_\alpha$, there is $\delta_x > 0$ such that if $0 < r < \delta_x$, then

$$
|f(y) - f(x)| < \alpha |y - x| \qquad \text{for any } y \in B(x, r),
$$

so that

$$
f(B(x,r)) \subseteq B(f(x), \alpha r). \tag{\#}
$$

Let

$$
\mathcal{U} = \{ B(x, r) : x \in E_{\alpha}, \ 0 < 5r < \delta_x, \ B(x, r) \subseteq G \}.
$$

 \Box

Then U is a Vitali cover of E_{α} . By Remark (3) of Vitali Covering Lemma, there is a countable disjoint subcollection ${B(x_n, r_n)}_{n=1}^{\infty} \subseteq \mathcal{U}$ such that

$$
E_{\alpha} \subseteq \bigcup_{n=1}^{N} B(x_n, r_n) \cup \bigcup_{n=N+1}^{\infty} B(x_n, 5r_n)
$$

and $\sum_{n=1}^{\infty}$ $n=N+1$ $m(B(x_n, 5r_n)) < \varepsilon$, for some N. Now (??) yields

$$
f(E_{\alpha}) \subseteq \bigcup_{n=1}^{N} f(B(x_n, r_n)) \cup \bigcup_{n=N+1}^{\infty} f(B(x_n, 5r_n))
$$

$$
\subseteq \bigcup_{n=1}^{N} B(f(x_n), \alpha r_n) \cup \bigcup_{n=N+1}^{\infty} B(f(x_n), 5\alpha r_n).
$$

Hence, by the scaling property of m , and the disjointness of $\{B(x_n, r_n)\},$

$$
m^*(f(E_\alpha)) \le \sum_{n=1}^N m^* (B(f(x_n), \alpha r_n)) + \sum_{n=N+1}^\infty m^* (B(f(x_n), 5\alpha r_n))
$$

= $\alpha \sum_{n=1}^N m (B(x_n, r_n)) + \alpha \sum_{n=N+1}^\infty m (B(x_n, 5r_n))$
 $\le \alpha m \left(\bigcup_{n=1}^N B(x_n, r_n) \right) + \alpha \varepsilon$
 $\le \alpha m (G) + \alpha \varepsilon$
 $\le \alpha m (E_\alpha) + 2\alpha \varepsilon.$

The result follows since $\varepsilon > 0$ is arbitrary.

