THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis

Tutorial 7 (March 18)

Dominated Convergence Theorem. Let $\{f_n\}$ be a sequence of measurable functions on E such that $f_n \to f$ a.e. on E. Suppose there is an integrable function g on E such that

$$|f_n| \le g$$
 a.e. on E, for all n

Then

$$\lim_{n} \int_{E} |f_n - f| = 0.$$

Remark. The dominance condition cannot be dropped. For example $f_n \coloneqq \chi_{[n,n+1]} \to 0$ but $\int_{\mathbb{R}} f = 1$ for all n.

Example 1. Evaluate
$$\lim_{n \to \infty} \int_0^1 \frac{n \sin x}{1 + n^2 \sqrt{x}} dx$$
.

Solution. Note that for $x \in (0, 1], n \in \mathbb{N}$,

$$\left|\frac{n\sin x}{1+n^2\sqrt{x}}\right| \le \frac{n}{1+n^2\sqrt{x}} \le \frac{1}{n\sqrt{x}} \le \frac{1}{\sqrt{x}}.$$

Hence $f_n(x) \coloneqq \frac{n \sin x}{1+n^2 \sqrt{x}} \to 0$ a.e. on [0,1], and $|f_n(x)| \leq 1/\sqrt{x}$ a.e. on [0,1]. Here $1/\sqrt{x} \in \mathcal{L}([0,1])$ since

$$\int_0^1 \frac{1}{\sqrt{x}} \, dx = \lim_{k \to \infty} \int_{1/k}^1 \frac{1}{\sqrt{x}} \, dx = \lim_{k \to \infty} 2\sqrt{x} \Big|_{1/k}^1 = 2 < \infty.$$

By Dominated Convergence Theorem, $\lim_{n \to \infty} \int_0^1 \frac{n \sin x}{1 + n^2 \sqrt{x}} dx = 0.$

Example 2 (Improper Riemann Integral). Let $f : [0, \infty) \to \mathbb{R}$ be Riemann integrable on any closed bounded subintervals of $[0, \infty)$. Then the improper Riemann integral is defined by

•

$$(\mathcal{R})\int_0^\infty f(x)\,dx \coloneqq \lim_{a \to \infty} \int_0^a f(x)\,dx$$

Does $(\mathcal{R})\int_0^\infty f(x)\,dx = (\mathcal{L})\int_0^\infty f(x)\,dx$?

Solution. No. For example, $(\mathcal{R}) \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$. However

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^+ dx \ge \sum_{n=1}^\infty \int_{2n\pi + \pi/4}^{2n\pi + 3\pi/4} \frac{1/\sqrt{2}}{2n\pi + 3\pi/4} dx$$
$$\ge \sum_{n=1}^\infty \frac{1}{\sqrt{2}} \cdot \frac{1}{4n\pi} \cdot \frac{\pi}{2} = \frac{1}{8\sqrt{2}} \sum_{n=1}^\infty \frac{1}{n} = \infty.$$

Similarly
$$\int_0^\infty \left(\frac{\sin x}{x}\right)^- dx = \infty$$
. So $(\mathcal{L}) \int_0^\infty \frac{\sin x}{x} dx$ does not even exist.

Remark. If $f \ge 0$ or $f \in \mathcal{L}([0,1])$, then $(\mathcal{R}) \int_0^\infty f(x) dx = (\mathcal{L}) \int_0^\infty f(x) dx$.

Example 3. Evaluate $\lim_{n \to \infty} \int_0^\infty n^2 e^{-nx} \tan^{-1} x \, dx$.

Solution. Note that the integral makes sense in view of Riemann and Lebesgue since $n^2 e^{-nx} \tan^{-1} x$ is nonnegative and continuous on $[0, \infty)$. Substituting y = nx, we have

$$\int_0^\infty n^2 e^{-nx} \tan^{-1} x \, dx = \int_0^\infty n e^{-y} \tan^{-1}(y/n) \, dy.$$

Note that $g_n(y) \coloneqq ne^{-y} \tan^{-1}(y/n)$ is continuous on $[0, \infty)$ and satisfies

$$g_n(y) \to ye^{-y}$$
 and $g_n(y) \le ye^{-y}$ for any $y \in [0, \infty)$.

Here ye^{-y} is integrable on $[0,\infty)$ since $\int_0^\infty ye^{-y} dy = 1$. Hence, by Dominated Convergence Theorem,

$$\lim_{n \to \infty} \int_0^\infty n^2 e^{-nx} \tan^{-1} x \, dx = \lim_{n \to \infty} \int_0^\infty g_n(y) \, dy = \int_0^\infty y e^{-y} \, dy = 1.$$

Let E be a measurable subset of \mathbb{R} , let f, f_n be measurable functions on E. Consider the following modes of convergence:

- (I) We say that $f_n \to f$ pointwise almost everywhere if there exists $A \subseteq E$ such that $m(E \setminus A) = 0$ and $f_n(x) \to f(x)$ for all $x \in A$.
- (II) We say that $f_n \to f$ in L^1 if $||f_n f||_1 \to 0$, where $||g||_1 := \int_E |g|$.

Example 4. (i) (I) does not imply (II): For example $f_n \coloneqq \chi_{[n,n+1]}$.

(ii) (II) does not imply (I): For example

$$f_n \coloneqq \chi_{\left[\frac{n-2^k}{2^k}, \frac{n-2^k+1}{2^k}\right]}, \quad \text{where } 2^k \le n < 2^{k+1}, \ k = 0, 1, 2, \dots$$

Borel-Cantelli Lemma. Let $\{A_n\}$ be a sequence of measurable sets in E such that $\sum_{n=1}^{\infty} m(A_n) < \infty$. Then

$$m(\{x : x \in A_n \text{ for infinitely many } n\}) = 0.$$

Proof. Let $g(x) = \sum_{n=1}^{\infty} \chi_{A_n}$. Then $g(x) = \infty$ if and only if $x \in A_n$ for infinitely many n. Since $\int_E g = \sum_{n=1}^{\infty} m(A_n) < \infty$, g is finite a.e. The result follows. **Example 5.** If $f_n \to f$ in L^1 , then $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \to f$ pointwise a.e.

Solution. For any $\varepsilon > 0$, $\int_E |f_n - f| \ge \varepsilon m(\{x : |f_n(x) - f(x)| \ge \varepsilon\})$, so that

$$m(\{x: |f_n(x) - f(x)| \ge \varepsilon\}) \le \frac{1}{\varepsilon} ||f_n - f||_1.$$

Take $\varepsilon = 2^{-k}$. Since $||f_n - f||_1 \to 0$, there is $N_k \in \mathbb{N}$ such that

$$||f_n - f||_1 < 2^{-2k}$$
 for all $n \ge N_k$.

Hence we can find a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that for each k,

$$m(E_k) \coloneqq m(\{x : |f_{n_k}(x) - f(x)| \ge 2^{-k}\}) < 2^k \cdot 2^{-2k} = 2^{-k}$$

Note $\sum_{k} m(E_k) \leq \sum_{k} 2^{-k} < \infty$. By Borel-Cantelli Lemma, we have

 $m(\{x : x \in E_k \text{ for infinitely many } k\}) = 0.$

Hence, for a.e. $x \in E$, there is $N(x) \in \mathbb{N}$ such that

$$|f_{n_k}(x) - f(x)| < 2^{-k}$$
 for all $k \ge N(x)$,

which implies that $f_{n_k}(x) \to f(x)$.