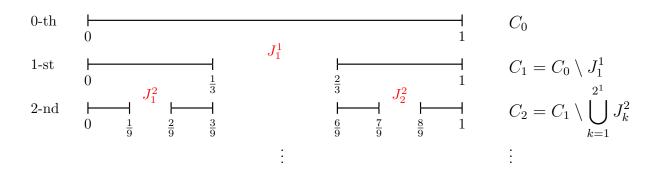
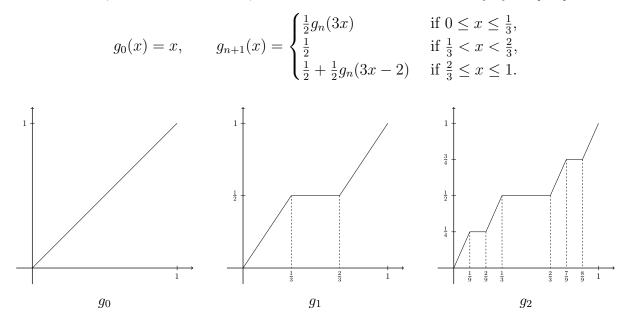
THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 4 (February 26)

Last time we constructed the Cantor set $\mathcal{C} \coloneqq \bigcap_n C_n$, where $\{C_n\}$ is a sequence of sets given by:



We showed that C is a nonempty compact set that is perfect and m(C) = 0. In particular, C is an uncountable set of measure zero.

Example 1 (The Cantor function). Define a sequence of functions $\{g_n\}$ on [0, 1] by



Then each g_n is continuous, increasing on [0, 1] satisfying

$$\sup_{0 \le x \le 1} |g_{n+1}(x) - g_n(x)| \le \frac{1}{2} \sup_{0 \le x \le 1} |g_n(x) - g_{n-1}(x)|$$
$$\le \dots \le \frac{1}{2^n} \sup_{0 \le x \le 1} |g_1(x) - g_0(x)|$$
$$\le \frac{1}{2^n}.$$

By Weierstrass *M*-test, the series $g_0 + \sum_{n=0}^{\infty} (g_{n+1} - g_n) = \lim_n g_n$ converges uniformly on [0, 1] to a function g. As the uniform limit of $\{g_n\}$, g is (a) continuous, (b) increasing, and (c) constant on each J_k^m , $k = 1, 2, \ldots, 2^m$, $m \in \mathbb{N}$. We call g the Cantor function.

Example 2. Let $\varphi \colon [0,1] \to \mathbb{R}$ be given by $\varphi(x) = x + g(x)$, where g(x) is the Cantor function defined above. Then it is clear that φ is continuous, strictly increasing and maps [0,1] onto [0,2]. Show that

- (a) $\varphi(\mathcal{C})$ is Borel.
- (b) $m(\varphi(\mathcal{C})) = 1.$
- **Solution.** (a) Extend φ appropriately to a continuous injective function on \mathbb{R} . Then, by Example 3 in Tutorial 1, φ maps the Borel set \mathcal{C} to a Borel set.
- (b) Since φ is injective,

$$\varphi(\mathcal{C}) = \varphi\left([0,1] \setminus \bigcup_{m=0}^{\infty} \bigcup_{k=1}^{2^m} J_k^{m+1}\right)$$
$$= \varphi([0,1]) \setminus \varphi\left(\bigcup_{m=0}^{\infty} \bigcup_{k=1}^{2^m} J_k^{m+1}\right)$$
$$= [0,2] \setminus \bigcup_{m=0}^{\infty} \bigcup_{k=1}^{2^m} \varphi\left(J_k^{m+1}\right).$$

If $J_k^{m+1} = (a, b)$, then

$$m(\varphi(a, b)) = m(\varphi(a), \varphi(b))$$

= $\varphi(b) - \varphi(a)$
= $b + g(b) - a - g(a)$
= $b - a$.

As J_k^{m+1} 's are all disjoint, we have

$$m(\varphi(\mathcal{C})) = 2 - \sum_{m=0}^{\infty} \sum_{k=1}^{2^m} m(J_k^{m+1}) = 2 - 1 = 1.$$

We assume the following result at the moment.

Proposition. Every measurable set in \mathbb{R} with positive measure contains a non-measurable subset.

Example 3. Show that there is a measurable set that is not Borel.

Solution. By the Proposition, there is a non-measurable set $E \subseteq \varphi(\mathcal{C})$. Now, $\varphi^{-1}(E)$ is measurable since

$$m^*(\varphi^{-1}(E)) \le m^*(\mathcal{C}) = 0.$$

However $\varphi^{-1}(E)$ is not Borel. For otherwise, $E = \varphi(\varphi^{-1}(E))$ is also Borel, hence measurable, which is a contradiction.