THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 3 (February 19)

Definition (Lower semi-continuity). Let $f : A \to \mathbb{R}$ and $x_0 \in A$. f is said to be lower semi-continuous (l.s.c) at x_0 if for any $\varepsilon > 0$, there exists $\delta > 0$ such that

 $f(x_0) - \varepsilon < f(x)$ for all $x \in A \cap V_{\delta}(x_0)$.

Example 1 (HW3 Q1). Let $f : [a, b] \to \mathbb{R}$. The Lower Envelope of f is the function $f : [a, b] \to [-\infty, \infty]$ defined by

$$f(x) := \sup\{g_{\delta}(x) : \delta > 0\} \text{ for all } x \in [a, b],$$

where $g_{\delta}(x) := \inf\{f(y) : y \in [a, b] \cap V_{\delta}(x)\}.$

- (a) Let $x \in [a, b]$. Show that $f(x) \leq f(x)$, and f(x) = f(x) if and only if f is l.s.c at x.
- (b) Show that if f is bounded, then f is l.s.c.
- (c) Show that if $\phi \colon [a, b] \to \mathbb{R}$ is l.s.c on [a, b] and $\phi \leq f$, then $\phi \leq f$.

Example 2 (The Cantor set). Consider the following construction:

Note that we remove 2^n open intervals of length 3^{-n-1} at the (n + 1)-th step. In this way, we obtain a sequence of sets $\{C_n\}$ defined by

$$C_0 = [0, 1], \qquad C_{n+1} = C_n \setminus \bigcup_{k=1}^{2^n} J_k^{n+1},$$

where $\{J_k^{n+1}: k = 1, ..., 2^n\}$ are the middle-1/3 open intervals removed from each of the closed bounded intervals in C_n . The sequence $\{C_n\}$ is decreasing, nonempty and compact. By Cantor's intersection Theorem, $\bigcap_{n=1}^{\infty} C_n$ is nonempty. We write $\mathcal{C} := \bigcap_{n=1}^{\infty} C_n$ and call it the Cantor set. The Cantor set \mathcal{C} satisfies the following properties.

- (a) C is compact.
- (b) C is perfect (hence uncountable). (Recall that a set A is perfect if every point in A is an accumulation point of A.)
- (c) m(C) = 0.

Solution. (a) Clear.

- (b) Suppose $x \in C$. Then $x \in C_n$ for all n. Let $I_n = [a_n, b_n]$ be the interval in C_n that contains x. It is clear from the construction of C that $a_n, b_n \in C$ and $|a_n b_n| = 3^{-n}$. Hence $\lim(a_n) = \lim(b_n) = x$. Thus x is an accumulation point of C.
- (c) Note that

$$C_{n+1} = C_n \setminus \bigcup_{k=1}^{2^n} J_k^{n+1} = \left(C_{n-1} \setminus \bigcup_{k=1}^{2^{n-1}} J_k^n \right) \setminus \bigcup_{k=1}^{2^n} J_k^{n+1} = \dots = C_0 \setminus \bigcup_{m=0}^n \bigcup_{k=1}^{2^m} J_k^{m+1}.$$

Hence

$$m(C_{n+1}) = m([0,1]) - \sum_{m=0}^{n} \sum_{k=1}^{2^m} m(J_k^{m+1})$$
$$= 1 - \sum_{m=0}^{n} \sum_{k=1}^{2^m} \frac{1}{3^{m+1}}$$
$$= 1 - \frac{1}{3} \sum_{m=0}^{n} \left(\frac{2}{3}\right)^m.$$

By Monotone Convergence Lemma for measures,

$$m(\mathcal{C}) = \lim m(C_{n+1}) = 1 - \frac{1}{3} \sum_{m=0}^{\infty} \left(\frac{2}{3}\right)^m = 1 - \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 0.$$