THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 2 (February 14)

Definition. The *outer measure* is a function $m^* : \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ defined by

$$
m^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \ell(I_n) : \{I_n\}_{n=1}^{\infty} \text{ is a countable open interval cover of } A \right\}.
$$

Here $\ell(I)$ denotes the length of an interval I.

Proposition 1. The outer measure m^* satisfies the following properties:

- (a) $m^*(\emptyset) = 0$ and $m^*(\{x\}) = 0$;
- (b) m[∗] is monotonic;
- (c) m^{*} is translational invariance;
- (d) $m^*(A) = \inf \{ m^*(O) : A \subseteq O, \text{ an open set in } \mathbb{R} \};$
- (e) m^{*} is countably subadditive.

Definition (Caratheodory's criterion). A subset $E \subseteq \mathbb{R}$ is said to be *measurable* if

$$
m^*(A) = m^*(A \cap E) + m^*(A \cap \widetilde{E}) \qquad \forall A \subseteq \mathbb{R}.
$$

Let M denote the family of all measurable sets.

Proposition 2. M and m satisfy the following properties:

- (a) M is a σ -algebra that contains all sets of m^* -measure zero;
- (b) $m^*|_{\mathcal{M}}$ is a measure;
- (c) $\mathcal{B} \subseteq \mathcal{M}$.

Definition (Lebesgue measure). The restriction of m^* to M is called the Lebesgue measure on $\mathbb R$ and is denoted by m.

- *Remark.* (1) By outer regularity, for any $A \subseteq \mathbb{R}$, there exists a G_{δ} -set $G \supseteq A$ such that $m^*(A) = m^*(G)$:
- (2) $M \subsetneq \mathcal{P}(\mathbb{R})$: By the Axiom of Choice, one can show that there is a **non-measurable** set $P \subseteq [0,1]$ such that

$$
(P+r) \cap (P+s) = \emptyset \qquad \forall r, s \in \mathbb{Q} \text{ s.t. } r \neq s.
$$

(3) $\mathcal{B} \subseteq \mathcal{M}$.

Montone Convergence Lemma for Measures. Let ${E_n}_{n \in \mathbb{N}}$ be a sequence of measurable sets.

- (a) If $E_n \uparrow E$ (i.e. $E_n \subseteq E_{n+1}$ $\forall n$ and $E = \bigcup_n E_n$), then $m(E_n) \uparrow m(E)$.
- (b) Suppose $m(E_{n_0}) < +\infty$ for some n_0 . If $E_n \downarrow E$ (i.e. $E_n \supseteq E_{n+1}$ $\forall n$ and $E = \bigcap_n E_n$), then $m(E_n) \downarrow m(E)$.

Remark. The result in (b) does not hold if the condition $m(E_{n_0}) < +\infty$ $\exists n_0$ is dropped: Take $E_n = [n, +\infty)$. Then $m(E_n) = +\infty$ for all n. However, $m(\bigcap_n E_n) = 0$ since $\bigcap_n E_n = \emptyset.$

Example 1. Give an example of a sequence of set ${E_n}_{n=1}^{\infty}$ such that $m^*(E_1) < +\infty$, $E_n \downarrow E$ but $m^*(E) < \lim_n m^*(E_n)$.

Solution. Let $P \subseteq [0,1]$ be the non-measurable set above. Let $\{r_n\}$ be an enumeration of $\mathbb{Q} \cap [-1,1]$. Define $E_n = \bigcup_{k \geq n} (P + r_k)$. Then $E_n \supseteq E_{n+1}$ and

$$
m^*(E_n) \le m^*(\bigcup_{k \ge n} (P + r_k)) \le m^*([-1, 2]) = 3.
$$

Moreover $E \coloneqq \bigcap_n E_n = \emptyset$ since $(P + r_k)$'s are pairwise disjoint. Hence $m^*(E) = 0$. However, by translation invariance of m^* and non-measurability of P, we have

$$
m^*(E_n) \ge m^*(P + r_n) = m^*(P) > 0.
$$

Thus

$$
m^*(E) = 0 < m^*(P) \le \lim_n m^*(E_n).
$$

Example 2. Let ${E_n}_{n=1}^{\infty}$ be a sequence of set such that $E_n \uparrow E$. Show that $\lim_n m^*(E_n) =$ $m^*(E)$.

Solution. It suffices to show that $\lim_{n} m^*(E_n) \geq m^*(E)$. WLOG, we assume that $m^*(E_n) < +\infty$. By outer regularity of m^* , for each $n \in \mathbb{N}$, there exists G_δ -set $G_n \supseteq E_n$ such that

$$
m^*(E_n) = m^*(G_n) = m(G_n). \tag{1}
$$

Let

$$
F_k \coloneqq \bigcap_{n \geq k} G_n \quad \text{and} \quad F \coloneqq \bigcup_{k \geq 1} F_k.
$$

Then ${F_k}$ is an increasing sequence of measurable sets such that $F_k \uparrow F$. Furthermore

$$
E_k \subseteq E_n \subseteq G_n \quad \forall n \geq k \implies E_k \subseteq F_k \implies E \subseteq F,
$$

and

$$
F_k \subseteq G_n \quad \forall n \ge k. \tag{2}
$$

 \blacktriangleleft

Now

$$
m^*(E) \le m^*(F) = m(F)
$$

\n
$$
= \lim_{k} m(F_k)
$$
 (by MCL for measure)
\n
$$
\le \lim_{k} \inf_{n \ge k} m(G_n)
$$
 (by (2))
\n
$$
= \lim_{n} \inf m(G_n)
$$

\n
$$
= \lim_{n} m^*(E_n)
$$
 (by (1))
\n
$$
= \lim_{n} m^*(E_n).
$$

Example 3. Let E be a subset of R with $m^*(E) > 0$. Show that for each $0 < \alpha < 1$, there exists an open interval I so that

$$
m^*(E \cap I) > \alpha m^*(I).
$$

Solution. WLOG we may assume $m^*(E) < +\infty$ since there is some $n \in \mathbb{Z}$ such that

$$
0 < m^*(E \cap [n, n+1]) \le 1.
$$

Let $0 < \alpha < 1$. By the outer regularity of m^* , there exists open $O \supseteq E$ such that

$$
m^*(E) > \alpha m^*(O) = \alpha m(O).
$$

By the structure theorem for open sets, we can write

$$
O=\bigcup_{n=1}^{\infty}I_n,
$$

where $\{I_n\}$ is a sequence of pairwise disjoint open intervals. Now

$$
\sum_{n=1}^{\infty} m^*(E \cap I_n) \ge m^*(E \cap \bigcup_{n=1}^{\infty} I_n) = m^*(E) > \alpha m(\bigcup_{n=1}^{\infty} I_n) = \sum_{n=1}^{\infty} \alpha m(I_n).
$$

This implies that

$$
m^*(E \cap I_n) > \alpha m(I_n) \quad \text{for some } n \in \mathbb{N}.
$$

Example 4 (Steinhaus Theorem). Suppose $E \subseteq \mathbb{R}$ is measurable with $m(E) > 0$. Prove that the difference set of E ,

$$
E - E := \{ x - y \in \mathbb{R} : x, y \in E \},
$$

contains an open interval centered at the origin.

 \blacktriangleleft

 \blacktriangleleft

Solution. By the previous Exercise, there exists an open interval I such that

$$
m(E \cap I) > \frac{7}{8}m(I) > 0.
$$
 (3)

Let $E_0 \coloneqq E \cap I$. Since $E_0 - E_0 \subseteq E - E$, it suffices to show that $E_0 - E_0$ contains an open interval centered at the origin.

Suppose it is not true. Then for any $\delta > 0$, there exists a with $0 < |a| < \delta$ such that $a \notin E_0 - E_0$. Hence E_0 and $E_0 + a$ are disjoint measurable sets such that

$$
E_0 \cup (E_0 + a) \subseteq I \cup (I + a).
$$

Now, if we take $\delta = \ell(I)/2$, then

$$
2m(E_0) = m(E_0 \cup (E_0 + a)) \le m(I \cup (I + a)) \le \frac{3}{2}m(I).
$$

So $m(E_0) \leq \frac{3}{4}$ 4 $m(I)$, contradicting (3).