THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 12 (April 29)

Let E be a measurable subset of \mathbb{R} .

Definition. For $1 \leq p < \infty$, define

$$
L^{p}(E) = \left\{ f \text{ measurable function on } E : ||f||_{p} := \left(\int_{E} |f|^{p} \right)^{1/p} < \infty \right\},\
$$

where we identify functions that are equal almost everywhere on E. Then $(L^p(E), \|\cdot\|_p)$ is a normed vector space.

Example 1. Let $1 < p, q < \infty$ such that $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1.$

- (a) Prove Young's inequality: $a \cdot b \leq \frac{a^p}{a}$ p $^{+}$ b^q q for $a, b \geq 0$. Show that equality holds if and only if $a^p = b^q$.
- (b) Prove Hölder's inequality using Young's inequality.
- (c) Show that Hölder's inequality becomes an equality if and only if there exist $\alpha, \beta \geq 0$, not both zero, such that $\alpha |f|^p = \beta |g|^q$ a.e.

Example 2. Deduce the Minkowski inequality from Hölder's inequality.

Definition. Let

 $L^{\infty}(E) = \{$ a.e. bounded measurable functions on $E\},\$

where we again identify functions that are equal almost everywhere on E . Define

 $||f||_{\infty} := \inf\{M : |f(x)| \leq M \text{ a.e. on } E\}.$

Then it is easy to see that

 $||f||_{\infty} \leq \lambda \iff |f(x)| \leq \lambda$ for a.e. $x \in E$.

Now $(L^{\infty}(E), \|\cdot\|_{\infty})$ is also a normed vector space and Hölder's inequality is true for $(p, q) = (1, \infty)$ or $(\infty, 1)$.

Theorem (Riesz-Fisher). For $1 \leq p \leq \infty$, $(L^p(E), ||\cdot||_p)$ is complete.

Example 3. Suppose $1 \leq p < q \leq \infty$. Show that $L^p(E) \nsubseteq L^q(E)$ and $L^q(E) \nsubseteq L^p(E)$ in general.

Example 4. Suppose $m(E) < \infty$. If $1 \leq p < q \leq \infty$, show that $L^q(E) \subseteq L^p(E)$.

Example 5. Suppose $||f||_r < \infty$ for some $1 \leq r < \infty$. Show that

$$
\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.
$$