THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 10 (April 15)

Theorem 1. Let $f \in \mathcal{L}[a, b]$. Then

$$
\frac{d}{dx} \int_a^x f = f(x) \quad \text{for a.e. } x \in [a, b].
$$

Theorem 2. If $F \in ABC[a, b]$, then $F'(x)$ exists a.e. in [a, b], $F' \in \mathcal{L}[a, b]$ and

$$
F(x) = \int_{a}^{x} F' + F(a) \quad \text{for all } x \in [a, b].
$$

Conversely, if $f \in \mathcal{L}[a, b]$, then the "indefinite integral" defined by

$$
x \mapsto \int_a^x f + \text{constant}
$$

is absolutely continuous on [a, b].

Example 1. Let $f \in BV[a, b]$. Show that

(a)
$$
\int_a^b |f'| \le T_a^b(f);
$$

\n(b) $f \in \text{ABC}[a, b]$ if and only if $\int_a^b |f'| = T_a^b(f).$

Decomposition for Absolutely Continuous Functions. Let $f: [a, b] \to \mathbb{R}$. Then $f \in ABC[a, b]$ if and only if there is a pair (g, h) of increasing absolutely continuous functions on [a, b] such that $f = g - h$.

Example 2. Let $f : [a, b] \to \mathbb{R}$ be a measurable function. Suppose $E \subseteq [a, b]$ is a measurable set and $f'(x)$ exists for all $x \in E$. Show that

$$
m^*(f(E)) \le \int_E |f'|.
$$

Solution. Note that f' is a measurable function on E. For each $n \in \mathbb{N}$, let

$$
E_n = \{x \in E : |f'(x)| < n\},
$$

\n
$$
E_{n,k} = \{x \in E : (k-1)2^{-n} \le |f'(x)| < k2^{-n}\} \text{ for } k = 1, 2, ..., n2^n.
$$

Then ${E_{n,k}}_{k=1}^{n2^n}$ are disjoint, measurable and $E_n = \bigcup_{k=1}^{n2^n} E_{n,k}$. Moreover $E_n \uparrow E$. Hence, by Example 2 in Tutorial 8,

$$
m^*(f(E_n)) \le \sum_k m^*(f(E_{n,k})) \le \sum_k \frac{k}{2^n} m^*(E_{n,k})
$$

\n
$$
\le \sum_k \frac{k-1}{2^n} m(E_{n,k}) + \frac{1}{2^n} \sum_k m(E_{n,k})
$$

\n
$$
\le \sum_k \int_{E_{n,k}} |f'| + \frac{1}{2^n} m(E_n)
$$

\n
$$
\le \int_{E_n} |f'| + \frac{1}{2^n} m(E)
$$

\n
$$
\le \int_E |f'| + \frac{b-a}{2^n}.
$$

Since $f(E_n) \uparrow f(E)$, it follows from the Monotone Convergence Lemma for m^* (see Tutorial 2) that $\lim_{n} m^*(f(E_n)) = m^*(f(E))$. Taking $n \to \infty$ gives $m^*(f(E)) \leq \int_E |f'|$.

Theorem 3 (Banach-Zarecki). Let $f : [a, b] \to \mathbb{R}$. Then $f \in ABC[a, b]$ if and only if the following conditions are all satisfied.

- (a) f is continuous on $[a, b]$.
- (b) $f \in BV[a, b]$.
- (c) f has Lusin N property, i.e. f maps a set of measure zero to a set of measure zero.

Proof. Suppose f satisfies (a), (b) and (c). Since $f \in BV[a, b]$, f' exists a.e. on [a, b] and $f' \in \mathcal{L}[a, b]$. Assume that $f'(x)$ exists on E with $m([a, b] \setminus E) = 0$. Note that E must be measurable. Let $\varepsilon > 0$. Then the absolute continuity of integral implies that there is $\delta > 0$ for which

$$
F \in \mathcal{M}, \ F \subseteq [a, b] \text{ and } m(F) < \delta \implies \int_{F} |f'| < \varepsilon. \tag{1}
$$

Let $\{(x_k, y_k)\}_{k=1}^n$ be non-overlapping intervals in $[a, b]$ such that $\sum_{k=1}^n |x_k - y_k| < \delta$. By continuity of f, there is $I_k := [c_k, d_k] \subseteq [x_k, y_k]$ such that $f([x_k, y_k]) \subseteq f(I_k)$, and hence $|f(x_k) - f(y_k)| \leq m^*(f(I_k))$. Now, by Example 2 and (c), we have

$$
m^*(f(I_k)) \le m^*(f(I_k \cap E)) + m^*(f(I_k \setminus E)) \le \int_{I_k \cap E} |f'| + 0 = \int_{I_k \cap E} |f'|.
$$

Since

$$
m(\bigcup_{k=1}^{n} (I_k \cap E) \le \sum_{k=1}^{n} m(I_k) \le \sum_{k=1}^{n} |x_k - y_k| < \delta,
$$

it follows from (1) that

$$
\sum_{k=1}^{n} |f(x_k) - f(y_k)| \le \sum_{k=1}^{n} \int_{I_k \cap E} |f'| = \int_{\bigcup_{k=1}^{n} (I_k \cap E)} |f'| < \delta.
$$

Therefore $f \in ABC[a, b]$.