THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 1 (February 12)

Definition. The Borel σ -algebra β is the smallest σ -algebra which contains all open subsets of \mathbb{R} , that is

 $\mathcal{B} := \bigcap \{ \mathcal{A} \subseteq \mathcal{P}(\mathbb{R}) : \mathcal{A} \text{ is a } \sigma\text{-algebra containing all open subsets of } \mathbb{R} \}$

The members of β are called *Borel sets*.

- Remark. (1) We also say that $\mathcal B$ is the σ -algebra generated by the open sets in $\mathbb R$ and write $\mathcal{B} = \sigma(G)$, where G is the collection of all open subsets of R.
- (2) Since any open set in R can be expressed as a countable (disjoint) union of open intervals and $(a, b) = \bigcup_{n=1}^{\infty} [a + 1/n, b - 1/n]$, we have

$$
\mathcal{B} = \sigma(\{(a, b) : a < b\}) = \sigma(\{(a, b) : a < b\}).
$$

Definition. (i) A set is G_{δ} if it is a countable intersection of open sets.

- (ii) A set is F_{σ} if it is a countable union of closed sets.
- (iii) A set is $G_{\delta\sigma}$ if it is a countable union of G_{δ} -sets.
- (iv) A set is $F_{\sigma\delta}$ if it is a countable intersection of F_{σ} -sets.

Remark. (1) An open set is F_{σ} and a closed set is G_{δ} .

(2) $G \subseteq G_{\delta} \subseteq G_{\delta\sigma} \subseteq \cdots \subseteq \mathcal{B}$ and $F \subseteq F_{\sigma} \subseteq F_{\sigma\delta} \subseteq \cdots \subseteq \mathcal{B}$.

Example 1. Show that a finite union or intersection of G_{δ} set is G_{δ} . The same result holds for F_{σ} , $G_{\delta\sigma}$, $F_{\sigma\delta}$ -sets, and so on.

Solution. It suffices to consider the union and intersection of two sets. Let G, G' be G_{δ} -sets. Then there exists sequences $(O_n)_{n\in\mathbb{N}}$, $(O'_m)_{m\in\mathbb{N}}$ of open sets such that

$$
G = \bigcap_{n \in \mathbb{N}} O_n \quad \text{and} \quad G' = \bigcap_{m \in \mathbb{N}} O'_m.
$$

Now

$$
G \cup G' = \left(\bigcap_{n \in \mathbb{N}} O_n\right) \cup G' = \bigcap_{n \in \mathbb{N}} (O_n \cup G') = \bigcap_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} (O_n \cup O'_m)
$$

=
$$
\bigcap_{\substack{(n,m) \in \mathbb{N} \times \mathbb{N} \\ \text{countable intersection}}} \underbrace{(O_n \cup O'_m)}_{\text{open}}.
$$

Therefore $G \cup G'$ is G_{δ} . It is obvious that $G \cap G'$ is also G_{δ} .

Example 2. Give an example for each of the following:

- (a) An F_{σ} -set that is not G_{δ} .
- (b) A Borel set that is neither F_{σ} nor G_{δ} .
- **Solution.** (a) Clearly $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$ is F_{σ} .

Suppose $\mathbb{Q} = \bigcap_n O_n$ where each O_n is open. Then $C_n := \widetilde{O_n}$ is closed nowhere dense since O_n is open dense. Now

$$
\mathbb{R} = \mathbb{Q} \cup \widetilde{\mathbb{Q}} = \bigcup_{q \in \mathbb{Q}} \{q\} \cup \bigcup_n C_n,
$$

which is a countable union of closed nowhere dense sets, contradicting the Baire Category Theorem.

(b) By the same argument in (a), one can show that $E \coloneqq \mathbb{Q} \cap [0,\infty)$ is Borel but not G_{δ} . By considering complement, we have that $F \coloneqq \widetilde{\mathbb{Q}} \cap (-\infty, 0]$ is Borel but not F_{σ} . Now $E \cup F$ is Borel but neither G_{δ} nor F_{σ} .

Example 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, and B be a Borel subset of \mathbb{R} . Show that $f^{-1}(B)$ is Borel.

Solution. Let

$$
\mathcal{A} = \{ A \in \mathcal{P}(\mathbb{R}) : f^{-1}(A) \in \mathcal{B} \}.
$$

If we can show that A is a σ -algebra that contains all open sets, then $\mathcal{B} \subseteq \mathcal{A}$ since \mathcal{B} is the smallest such σ -algebra.

(I) $\mathcal A$ is a σ -algebra:

(a)
$$
f^{-1}(\emptyset) = \emptyset \in \mathcal{B} \implies \emptyset \in \mathcal{A};
$$

\n(b) $A \in \mathcal{A} \implies f^{-1}(\widetilde{A}) = \widetilde{f^{-1}(A)} \in \mathcal{B} \implies \widetilde{A} \in \mathcal{A};$
\n(c) $(A_n) \subseteq \mathcal{A} \implies f^{-1}(\bigcup_n A_n) = \bigcup_n f^{-1}(A_n) \in \mathcal{B} \implies \bigcup_n A_n \in \mathcal{A}.$

(II) $\mathcal A$ contains all open sets:

By the continuity of f, \forall open $O \subseteq \mathbb{R}, f^{-1}(O)$ is open, hence Borel. So A contains all open sets.

Thus $\mathcal{B} \subseteq \mathcal{A}$, which means $f^{-1}(B) \in \mathcal{B}$ for any $B \in \mathcal{B}$.

 \blacktriangleleft

Example 4. Let $f : \mathbb{R} \to \mathbb{R}$ be an **injective** continuous function, and B be a Borel subset of R. Show that $f(B)$ is Borel.

Solution. Let $\mathcal{C} = \{A \in \mathcal{P}(\mathbb{R}) : f(A) \in \mathcal{B}\}.$

- (I) C is a σ -algebra:
	- (a) $f(\mathbb{R}) = f(\bigcup_{n} [-n, n]) = \bigcup_{n}$ compact ${\widehat{f([-n,n])}} \in \mathcal{B} \implies \mathbb{R} \in \mathcal{C};$ (b) f injective $\implies f(\mathbb{R}) = f(A) \cup$ $\bigcup_{\infty} f(\widetilde{A}) \implies f(\widetilde{A}) = f(\mathbb{R}) \setminus f(A).$ So $A \in$ $C \implies \widetilde{A} \in \mathcal{C}$; (c) $(A_n) \subseteq \mathcal{C} \implies f(\bigcup_n A_n) = \bigcup_n f(A_n) \in \mathcal{B} \implies \bigcup_n A_n \in \mathcal{C}.$
- (II) $\mathcal C$ contains all *closed bounded intervals*:

By the continuity of $f, \forall a < b, f|a, b|$ is compact, hence Borel. So C contains all closed bounded intervals, hence all open sets.

Thus $\mathcal{B} \subset \mathcal{C}$, which means $f(B) \in \mathcal{B}$ for any $B \in \mathcal{B}$.

Example 5. Let $f_n: \mathbb{R} \to \mathbb{R}$ be a sequence of continuous functions. Show that the set of points where (f_n) converges to a finite limit is an $F_{\sigma\delta}$ -set.