THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4050 Real Analysis Tutorial 1 (February 12)

Definition. The Borel σ -algebra \mathcal{B} is the smallest σ -algebra which contains all open subsets of \mathbb{R} , that is

 $\mathcal{B} \coloneqq \bigcap \{ \mathcal{A} \subseteq \mathcal{P}(\mathbb{R}) : \mathcal{A} \text{ is a } \sigma \text{-algebra containing all open subsets of } \mathbb{R} \}$

The members of \mathcal{B} are called *Borel sets*.

- *Remark.* (1) We also say that \mathcal{B} is the σ -algebra generated by the open sets in \mathbb{R} and write $\mathcal{B} = \sigma(G)$, where G is the collection of all open subsets of \mathbb{R} .
- (2) Since any open set in \mathbb{R} can be expressed as a countable (disjoint) union of open intervals and $(a,b) = \bigcup_{n=1}^{\infty} [a+1/n, b-1/n]$, we have

$$\mathcal{B} = \sigma(\{(a, b) : a < b\}) = \sigma(\{[a, b] : a < b\}).$$

Definition. (i) A set is G_{δ} if it is a countable intersection of open sets.

- (ii) A set is F_{σ} if it is a countable union of closed sets.
- (iii) A set is $G_{\delta\sigma}$ if it is a countable union of G_{δ} -sets.
- (iv) A set is $F_{\sigma\delta}$ if it is a countable intersection of F_{σ} -sets.

Remark. (1) An open set is F_{σ} and a closed set is G_{δ} .

(2) $G \subseteq G_{\delta} \subseteq G_{\delta\sigma} \subseteq \cdots \subseteq \mathcal{B}$ and $F \subseteq F_{\sigma} \subseteq F_{\sigma\delta} \subseteq \cdots \subseteq \mathcal{B}$.

Example 1. Show that a finite union or intersection of G_{δ} set is G_{δ} . The same result holds for $F_{\sigma}, G_{\delta\sigma}, F_{\sigma\delta}$ -sets, and so on.

Solution. It suffices to consider the union and intersection of two sets. Let G, G' be G_{δ} -sets. Then there exists sequences $(O_n)_{n \in \mathbb{N}}, (O'_m)_{m \in \mathbb{N}}$ of open sets such that

$$G = \bigcap_{n \in \mathbb{N}} O_n$$
 and $G' = \bigcap_{m \in \mathbb{N}} O'_m$.

Now

$$\begin{aligned} G \cup G' &= \left(\bigcap_{n \in \mathbb{N}} O_n \right) \cup G' = \bigcap_{n \in \mathbb{N}} \left(O_n \cup G' \right) = \bigcap_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} \left(O_n \cup O'_m \right) \\ &= \bigcap_{\substack{(n,m) \in \mathbb{N} \times \mathbb{N} \\ \text{countable intersection}}} \underbrace{\left(O_n \cup O'_m \right)}_{\text{open}}. \end{aligned}$$

Therefore $G \cup G'$ is G_{δ} . It is obvious that $G \cap G'$ is also G_{δ} .

Example 2. Give an example for each of the following:

- (a) An F_{σ} -set that is not G_{δ} .
- (b) A Borel set that is neither F_{σ} nor G_{δ} .
- **Solution.** (a) Clearly $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$ is F_{σ} .

Suppose $\mathbb{Q} = \bigcap_n O_n$ where each O_n is open. Then $C_n \coloneqq \widetilde{O_n}$ is closed nowhere dense since O_n is open dense. Now

$$\mathbb{R} = \mathbb{Q} \cup \widetilde{\mathbb{Q}} = \bigcup_{q \in \mathbb{Q}} \{q\} \cup \bigcup_{n} C_{n},$$

which is a countable union of closed nowhere dense sets, contradicting the Baire Category Theorem.

(b) By the same argument in (a), one can show that $E := \mathbb{Q} \cap [0, \infty)$ is Borel but not G_{δ} . By considering complement, we have that $F := \widetilde{\mathbb{Q}} \cap (-\infty, 0]$ is Borel but not F_{σ} . Now $E \cup F$ is Borel but neither G_{δ} nor F_{σ} .

Example 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, and *B* be a Borel subset of \mathbb{R} . Show that $f^{-1}(B)$ is Borel.

Solution. Let

$$\mathcal{A} = \{ A \in \mathcal{P}(\mathbb{R}) : f^{-1}(A) \in \mathcal{B} \}.$$

If we can show that \mathcal{A} is a σ -algebra that contains all open sets, then $\mathcal{B} \subseteq \mathcal{A}$ since \mathcal{B} is the smallest such σ -algebra.

(I) \mathcal{A} is a σ -algebra:

(a)
$$f^{-1}(\emptyset) = \emptyset \in \mathcal{B} \implies \emptyset \in \mathcal{A};$$

(b) $A \in \mathcal{A} \implies f^{-1}(\widetilde{A}) = \widetilde{f^{-1}(A)} \in \mathcal{B} \implies \widetilde{A} \in \mathcal{A};$
(c) $(A_n) \subseteq \mathcal{A} \implies f^{-1}(\bigcup_n A_n) = \bigcup_n f^{-1}(A_n) \in \mathcal{B} \implies \bigcup_n A_n \in \mathcal{A}.$

(II) \mathcal{A} contains all open sets:

By the continuity of f, \forall open $O \subseteq \mathbb{R}, f^{-1}(O)$ is open, hence Borel. So A contains all open sets.

Thus $\mathcal{B} \subseteq \mathcal{A}$, which means $f^{-1}(B) \in \mathcal{B}$ for any $B \in \mathcal{B}$.

-

Example 4. Let $f : \mathbb{R} \to \mathbb{R}$ be an **injective** continuous function, and *B* be a Borel subset of \mathbb{R} . Show that f(B) is Borel.

Solution. Let $C = \{A \in \mathcal{P}(\mathbb{R}) : f(A) \in \mathcal{B}\}.$

(I) C is a σ -algebra:

(a)
$$f(\mathbb{R}) = f(\bigcup_n [-n, n]) = \bigcup_n \overbrace{f([-n, n])}^{\text{compact}} \in \mathcal{B} \implies \mathbb{R} \in \mathcal{C};$$

(b) f injective $\implies f(\mathbb{R}) = f(A) \bigcup_{\circ} f(\widetilde{A}) \implies f(\widetilde{A}) = f(\mathbb{R}) \setminus f(A).$ So $A \in \mathcal{C} \implies \widetilde{A} \in \mathcal{C};$
(c) $(A_n) \subseteq \mathcal{C} \implies f(\bigcup_n A_n) = \bigcup_n f(A_n) \in \mathcal{B} \implies \bigcup_n A_n \in \mathcal{C}.$

(II) C contains all closed bounded intervals:

By the continuity of f, $\forall a < b$, f[a, b] is compact, hence Borel. So C contains all closed bounded intervals, hence all open sets.

Thus $\mathcal{B} \subseteq \mathcal{C}$, which means $f(B) \in \mathcal{B}$ for any $B \in \mathcal{B}$.

Example 5. Let $f_n \colon \mathbb{R} \to \mathbb{R}$ be a sequence of continuous functions. Show that the set of points where (f_n) converges to a finite limit is an $F_{\sigma\delta}$ -set.