THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 4050 Real Analysis Suggested Solution of Homework 17JAN2020

- 1. Show that, $\forall \emptyset \neq A \subseteq B \subseteq \mathbb{R}^*$,
 - (a) $\sup A \leq \sup B$
 - (b) $\inf A \ge \inf B$
 - (c) $\sup(A+B) \le \sup A + \sup B$
 - (d) $\inf(A+B) \ge \inf A + \inf B$
 - (e) $\sup(-A) = -\inf A$.
 - **Solution.** (a) For any $a \in A$, we have $a \in B$, and hence $a \leq \sup B$. Thus $\sup A \leq \sup B$.
 - (b) Similar to (a).
 - (c) For $a \in A$, $b \in B$, we have $a \leq \sup A$, $b \leq \sup B$, so that $a+b \leq \sup A + \sup B$. Thus $\sup A + \sup B$ is an upper bound of A + B, and hence

$$\sup(A+B) \le \sup A + \sup B.$$

- (d) Similar to (c).
- (e) For any a ∈ A, we have a ≥ inf A, which implies that -a ≤ inf A. Therefore sup(-A) ≤ inf A.
 Similarly, for any a ∈ A, we have -a ≤ sup(-A), which implies that a ≥ sup(-A). Thus inf A ≥ sup(-A), that is, sup(-A) ≥ inf A.

2. Let $\{A_n : n \in \mathbb{N}\}$ be a sequence of sets and $B_n \coloneqq A_n \setminus \left(\bigcup_{i < n} A_i\right) \forall n > 1$. Show (by the well-order principle) that $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$.

Solution. Let $B_1 = A_1$. Suppose $\bigcup_{n=1}^k B_n = \bigcup_{n=1}^k A_n$ for some $k \ge 1$. Then

$$\bigcup_{n=1}^{k+1} B_n = \bigcup_{n=1}^k B_n \cup B_{k+1}$$
$$= \bigcup_{n=1}^k A_n \cup \left(A_{k+1} \setminus \left(\bigcup_{i < k+1} A_i \right) \right)$$
$$= \bigcup_{n=1}^{k+1} A_n.$$

By induction,
$$\bigcup_{n=1}^{k} B_n = \bigcup_{n=1}^{k} A_n$$
 for all $k \in \mathbb{N}$. Hence $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$.

3. Let $f: A \to \mathbb{R}$ (A, for simplicity an interval) and $x_0 \in A$. We say that f is lower semicontinuous (lsc) at x_0 if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t.

$$f(x_0) - \varepsilon < f(x) \qquad \forall x \in A \cap V_{\delta}(x_0).$$

Show that (i) \iff (ii) \iff (iii), where

- (i) f is lsc at x_0
- (ii) $f(x_0) \le \sup_{\delta > 0} \inf_{u \in A \cap V_{\delta}(x_0)} f(u)$
- (iii) $f(x_0) \leq \sup_{\delta > 0} \inf_{u \in (A \setminus \{x_0\}) \cap V_{\delta}(x_0)} f(u).$

Solution. (i) \implies (ii). Suppose f is lsc at x_0 . Then it follows immediately from the definition that $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $f(x_0) - \varepsilon \leq \inf_{u \in A \cap V_{\delta}(x_0)} f(u)$. Hence

$$f(x_0) - \varepsilon \le \sup_{\delta > 0} \inf_{u \in A \cap V_{\delta}(x_0)} f(u).$$

As $\varepsilon > 0$ is arbitrary, (ii) follows.

(ii) \Longrightarrow (iii). It is clear since $\inf_{u \in A \cap V_{\delta}(x_0)} f(u) \le \inf_{u \in (A \setminus \{x_0\}) \cap V_{\delta}(x_0)} f(u)$ for any $\delta > 0$.

(iii) \implies (i). Assume (iii) holds and let $\varepsilon > 0$. By the definition of supremum, $\exists \delta > 0$ such that

$$f(x_0) - \varepsilon < \inf_{u \in (A \setminus \{x_0\}) \cap V_{\delta}(x_0)} f(u).$$

Clearly, $f(x_0) - \varepsilon < f(x_0)$. We have

$$f(x_0) - \varepsilon < f(u) \qquad \forall u \in A \cap V_{\delta}(x_0).$$

Thus f is lsc at x_0 .

- 4. Let (X, \mathcal{A}, μ) be a "measure space": X is a set, \mathcal{A} a σ -algebra of subsets of X, and $\mu: \mathcal{A} \to [0, +\infty]$ a measure. Show that
 - (a) If $A \subseteq B$ and $\mu(A) < +\infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.
 - (b) Let $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{A}$ with $A_n \subseteq A_{n+1} \ \forall n$. Show that $\mu(A_n) \leq \mu(A_{n+1}) \ \forall n$ and $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n} \mu(A_n)$.
 - (c) Let $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{A}$ with $A_n \supseteq A_{n+1} \forall n$. Show that $\lim_n \mu(A_n) = \mu(\bigcap_{n=1} A_n)$, provided that $\mu(A_N) < +\infty$ for some $N \in \mathbb{N}$.

Solution. (a) Write $B = A \cup (B \setminus A)$. Since A and $B \setminus A$ are disjoint sets in \mathcal{A} , it follows from the additivity of measure that

$$\mu(B) = \mu(A) + \mu(B \setminus A).$$

As $\mu(A) < +\infty$, we have $\mu(B \setminus A) = \mu(B) - \mu(A)$.

(b) By the same argument in (a), we have

$$\mu(A_{n+1}) = \mu(A_n) + \mu(A_{n+1} \setminus A_n) \ge \mu(A_n) \quad \text{for all } n \in \mathbb{N}$$

Let $B_n := A_n \setminus \left(\bigcup_{i < n} A_i\right) \forall n \ge 1$. Then $\{B_n\}_{n=1}^{\infty}$ is a sequence of pairwise disjoint sets in \mathcal{A} such that

$$A_N = \bigcup_{n=1}^N B_n \quad \forall N \ge 1 \quad \text{and} \quad \bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n.$$

Hence, by the countable additivity of μ , we have

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \mu(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} \mu(B_n)$$
$$= \lim_{N \to \infty} \sum_{n=1}^{N} \mu(B_n) = \lim_{N \to \infty} \mu(\bigcup_{n=1}^{N} B_n)$$
$$= \lim_{N \to \infty} \mu(A_N).$$

(c) For $n \ge N$, define $C_n = A_N \setminus A_n$. Then $C_n \subseteq C_{n+1}$ for $n \ge N$ and

$$\bigcup_{n=N}^{\infty} C_n = A_N \setminus \left(\bigcap_{n=N}^{\infty} A_n\right)$$

Note that $\mu(\bigcap_{n=N}^{\infty} A_n) \leq \mu(A_N) < +\infty$. By (a) and (b), we have

$$\mu(A_N) - \mu(\bigcap_{n=N}^{\infty} A_n) = \mu(\bigcup_{n=N}^{\infty} C_n) = \lim_n \mu(C_n) = \mu(A_N) - \lim_n \mu(A_n).$$

As $\{A_n\}_{n=1}^{\infty}$ is decreasing, we obtain

$$\lim_{n} \mu(A_n) = \mu(\bigcap_{n=N}^{\infty} A_n) = \mu(\bigcap_{n=1}^{\infty} A_n).$$

5. In $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, +\infty\}$, show the "Generalized" Monotone Convergence Theorem for sequences of extended-real numbers: If (a_n) is a monotone sequence of extended-real numbers, then it converges to a limit in \mathbb{R}^* . Show further that

$$\limsup x_n \coloneqq \inf_{k \in \mathbb{N}} (\sup_{n \ge k} x_n)$$
$$\liminf x_n \coloneqq \sup_{k \in \mathbb{N}} (\inf_{n \ge k} x_n)$$

exist in \mathbb{R}^* , and that

$$\liminf x_n = \limsup x_n \quad \text{iff} \quad \lim_n x_n \text{ exists}$$

(and all three are the same then).

Solution. To prove the "Generalized" Monotone Convergence Theorem, it suffices to show that an unbounded increasing sequence (a_n) converges to $+\infty$. Let $\alpha > 0$. Clearly a_1 is a lower bound of (a_n) . As (a_n) is unbounded, α is not an upper bound. So there is $N \in \mathbb{N}$ such that $a_N > \alpha$. Since (a_n) is increasing, we have $a_n \ge a_N > \alpha$ for all $n \ge N$. Hence $\lim(a_n) = +\infty = \sup a_n$.

By our extended definitions of supremum and infimum for subsets of \mathbb{R}^* , $\limsup x_n$ and $\liminf x_n$ clearly exist in \mathbb{R}^* . Furthermore, it follows from the "Generalized" Monotone Convergence Theorem that the decreasing sequence $(\sup_{n\geq k} x_n)_{k=1}^{\infty}$ and the

increasing sequence $(\inf_{n \ge k} x_n)_{k=1}^{\infty}$ both converge (in \mathbb{R}^*) with limits, respectively,

$$\lim_{k} (\sup_{n \ge k} x_n) = \inf_{k \in \mathbb{N}} (\sup_{n \ge k} x_n) \quad \text{and} \quad \lim_{k} (\inf_{n \ge k} x_n) = \sup_{k \in \mathbb{N}} (\inf_{n \ge k} x_n).$$
(*)

 (\Longrightarrow) . Suppose $\liminf x_n = \limsup x_n = \ell$. If $\ell \in \mathbb{R}$, then for any $\varepsilon > 0$, we have $\limsup x_n < \ell + \varepsilon$ and $\liminf x_n > \ell - \varepsilon$. Hence there exits $k \in \mathbb{N}$ such that

$$x_n \leq \sup_{n \geq k} x_n < \ell + \varepsilon$$
 for all $n \geq k$,

and

$$x_n \ge \inf_{n \ge k} x_n > \ell - \varepsilon$$
 for all $n \ge k$.

Combining two inequalities above, we have $\lim x_n = \ell$.

If $\ell = +\infty$, then for any $\alpha > 0$, there exits $k \in \mathbb{N}$ such that $x_n \ge \inf_{n \ge k} x_n > \alpha$ for all $n \ge k$. Thus $\lim_{n \to \infty} x_n = +\infty$. The proof is similar for $\ell = -\infty$.

(\Leftarrow). Suppose $\lim_{n} x_n = \ell$. If $\ell \in \mathbb{R}$, then for any $\varepsilon > 0$, there exits $N \in \mathbb{N}$ such that $\ell - \varepsilon < x_n < \ell + \varepsilon$ for $n \ge N$. Thus

$$\ell - \varepsilon \le \inf_{n \ge k} x_n \le \sup_{n \ge k} x_n \le \ell + \varepsilon$$
 for all $k \ge N$.

Letting $k \to \infty$, it follows from (*) that

$$\ell - \varepsilon \leq \liminf x_n \leq \limsup x_n \leq \ell + \varepsilon.$$

Since ε is arbitrary, we have $\liminf x_n = \limsup x_n = \ell$. The cases $\ell = \pm \infty$ can be proved in similar fashions.