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MATH 4050 Real Analysis

Suggested Solution of Homework 7(additional)

1. Using the Structure Theorem for Open Sets (and check by epsilon-delta terminology)
show that each continuous function f on a closed set F in R can be continuously
extended to be on the whole of R (this is known as the Tietze extension Theorem).

Solution. By the Structure Theorem for Open Sets, the open set G := R \ F can be

expressed as G =
⋃̊∞

n=1In, where In’s are countable disjoint open intervals. Now let
g : R → R be linear on each In and g(x) = f(x) for all x ∈ F . By HW6 Q5, g is a
continuous function and g

∣∣
F

= f . J

2. Let f be a measurable real-valued function on a set E of finite measure. Show that
there exists a sequence of continuous functions convergent to f almost everywhere on
E. Hence, for any r > 0, there exists a closed set F contained in E with m(E \F ) < r
such that the above convergence is uniform on F and the restriction of f to F is
continuous.

Solution. By Littlewood’s Second Principle, for each n ∈ N, there exists a continuous
function fn : R→ R and An ⊆ E such that m(An) < 2−n and

|fn(x)− f(x)| < 2−n for all x ∈ E \ An.

Let A =
∞⋂
n=1

∞⋃
k=n

Ak. Then m(A) = lim
n
m(

∞⋃
k=n

Ak) = 0 (since m(
∞⋃
k=n

Ak) ≤ 2−n+1), and

for all x ∈ E \ A, there exists Nx ∈ N such that

|fn(x)− f(x)| < 2−n for all n ≥ Nx.

Hence (fn) converges to f a.e. on E.

Let r > 0. By Egoroff’s Theorem, there exists a measurable set B ⊆ E such that
m(E \B) < r/2 and

fn → f uniformly on B.

By Littlewood’s First Principle, we can find a closed set F ⊆ B such that m(B \F ) <
r/2. Now F is closed, F ⊆ E, m(E \ F ) < r/2 + r/2 = r and fn → f uniformly on F .
As the uniform limit of a sequence of continuous functions, f

∣∣
F

is also continuous.

J

3. Let f be a measurable real-valued function on a measurable set E of possibly infinite
measure, and let r > 0. Apply Q2 to get a corresponding closed set Fn contained in
the intersection of E with (n, n + 1] for each integer n. Show that the union F of Fn

is closed and that the restriction of f to F is continuous. Moreover we can arrange in
such a way that m(E \ F ) < r.
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Solution. Fix n ∈ Z. By Q2, we can find a closed set Fn ⊆ En := E ∩ (n, n+ 1] such
that m(En \Fn) < r ·2−|n|−2 and f

∣∣
Fn

is continuous. Let F =
⋃

n∈Z Fn. Then it follows

from HW6 Q3 that f
∣∣
F

is continuous. Moreover,

m(E \ F ) = m

(⋃
n∈Z

(En \ Fn)

)
≤
∑
n∈Z

m(En \ Fn) < r
∑
n∈Z

2−|n|−2 < r.

As each Fn is closed and Fn ⊆ (n, n+ 1], we have Fn ⊆ [n+ δn, n+ 1] for some δn > 0.
Now F is closed since R \ F =

⋃
n∈Z((n, n+ 1 + δn+1) \ Fn) is open. J

4. Let f be a non-negative extended real function on a measurable set E. Show that the
sequence (fn) of simple functions monotonically increases and converges pointwisely to
f , where

fn :=
n·2n∑
k=1

k − 1

2n
χ
Bn,k

+ nχAn ,

An = {x ∈ E ∩ [−n, n] : n ≤ f(x)},

Bn,k =

{
x ∈ E ∩ [−n, n] :

k − 1

2n
≤ f(x) <

k

2n

}
, k = 1, . . . , n · 2n.

Solution. Note that, for n ∈ N,

χ
Bn,k
≤ χ

Bn+1,2k−1
+ χ

Bn+1,2k
for 1 ≤ k ≤ n · 2n,

and

χ
An ≤ χ

An+1 +

(n+1)·2n+1∑
k=n·2n+1+1

χ
Bn+1,k

.

So the sequence (fn) is monotonically increasing.

If f(x) < +∞, then 0 ≤ f(x)−fn(x) ≤ 1

2n
for n > max{|x|, |f(x)|}, so that lim

n
fn(x) =

f(x).

If f(x) = +∞, then for n ≥ |x|, fn(x) = n, which → +∞, as n→∞.

Hence the sequence (fn) converges pointwisely to f . J

5. Let m(E) ≤ +∞, and L(E) consist of all measurable functions f on E such that∫
E

|f | < +∞. Let fn, gn, f, g ∈ L(E) be such that fn → f, gn → g and |fn| ≤ gn ∀n

(all are pointwise or a.e. on E). Suppose further that lim
n

∫
E

gn =

∫
E

g. Show that

lim
n

∫
E

|fn − f | = 0.

Solution. By Triangle inequality,

|fn − f | ≤ |fn|+ |f | ≤ gn + |f | a.e. on E,
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so that gn + |f |− |fn−f | ≥ 0 a.e. on E. By the assumptions, lim
n

(gn + |f |− |fn−f |) =

g + |f |. Using Fatou’s lemma, we have∫
E

g +

∫
E

|f | =
∫
E

(g + |f |) ≤ lim inf
n

∫
E

(gn + |f | − |fn − f |)

=

∫
E

g +

∫
E

|f | − lim sup
n

∫
E

|fn − f |.

As

∫
E

|f |,
∫
E

g < +∞, we have lim sup
n

∫
E

|fn−f | ≤ 0, and thus lim
n

∫
E

|fn−f | = 0. J

6. Let fn, f ∈ L(E) and fn → f a.e. on E. Suppose lim
n

∫
E

|fn| =

∫
E

|f |. Show that

lim
n

∫
E

fn =

∫
E

f .

Solution. Take gn := |fn| and g := |f |. Then clearly gn → g a.e. on E and |fn| ≤ gn

on E for all n. It follows from Q5 that lim
n

∫
E

|fn − f | = 0. Now lim
n

∫
E

fn =

∫
E

f since

∣∣∣∣∫
E

fn −
∫
E

f

∣∣∣∣ ≤ ∫
E

|fn − f | .

J


