MATH 4050 Real Analysis

Suggested Solution of Homework 4

Only the solutions to * questions are provided.

1.* (3rd: P.64, Q9)

Show that if E is a measurable set, then each translate E+y of E is also measurable.

Solution. Let $A \subseteq \mathbb{R}$. Then $A - y \subseteq \mathbb{R}$ and the translation invariance of m^* yields

$$m^{*}(A) = m^{*}(A - y) = m^{*}((A - y) \cap E) + m^{*}((A - y) \cap \tilde{E})$$

= $m^{*}(((A - y) \cap E) + y) + m^{*}(((A - y) \cap \tilde{E}) + y)$
= $m^{*}(A \cap (E + y)) + m^{*}(A \cap (E + y)^{\sim}).$

Hence E + y is also measurable.

2.* (3rd: P.64, Q10; 4th: P.43, Q24) Show that if E_1 and E_2 are measurable, then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

Solution. If either $m(E_1)$ or $m(E_2)$ is infinite, the equality is trivial. Suppose $m(E_1), m(E_2) < \infty$. Since $E_1 \cap E_2 \subset E_2$ and it is measurable with $m(E_1 \cap E_2) \leq$ $m(E_2) < \infty$, we have

$$m(E_2 \setminus (E_1 \cap E_2)) = m(E_2) - m(E_1 \cap E_2).$$

Write $E_1 \cup E_2$ as a disjoint union, $E_1 \cup E_2 = E_1 \cup_0 (E_2 \setminus (E_1 \cap E_2))$. Then

$$m(E_1 \cup E_2) = m(E_1) + m(E_2 \setminus (E_1 \cap E_2)) = m(E_1) + m(E_2) - m(E_1 \cap E_2),$$

that is,
$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$$
.

(3rd: P.64, Q11; 4th: P.43, Q25)

Show that the condition $m(E_1) < \infty$ is necessary in Proposition 14 (3rd ed.) by giving a decreasing sequence $\{E_n\}$ of measurable sets with $\emptyset = \bigcap E_n$ and $m(E_n) =$ ∞ for each n.

Proposition 14: Let $\{E_n\}$ be an infinite decreasing sequence of measurable sets, that is, a sequence with $E_{n+1} \subset E_n$ for each n. Let $m(E_1)$ be finite. Then

$$m(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} m(E_n).$$

- 4.* (3rd: P.70, Q21; 4th: P.59, Q2,6)
 - (a) Let D and E be measurable sets and f a function with domain $D \cup E$. Show that f is measurable if and only if its restrictions to D and E are measurable.

(b) Let f be a function with measurable domain D. Show that f is measurable if and only if the function g defined (on \mathbb{R}) by g(x) = f(x) for $x \in D$ and g(x) = 0 for $x \notin D$ is measurable.

Solution. (a) (\Rightarrow) : Suppose f is measurable. Then

$$\{x \in D : f|_D(x) > \alpha\} = \{x \in D \cup E : f(x) > \alpha\} \cap D$$

is also measurable. Similarly $\{x \in E : f|_E(x) > \alpha\}$ is measurable. Since $\alpha \in \mathbb{R}$ is arbitrary, both restrictions $f|_D$ and $f|_E$ are measurable.

 (\Leftarrow) : It follows immediately from the following equation:

$$\{x \in D \cup E : f(x) > \alpha\} = \{x \in D : f|_{D}(x) > \alpha\} \cup \{x \in E : f|_{E}(x) > \alpha\}.$$

(b) (\Rightarrow) : Suppose f is measurable. Then

$$\{x: g(x) > \alpha\} = \begin{cases} \{x \in D: f(x) > \alpha\} & \text{if } \alpha \ge 0, \\ \{x \in D: f(x) > \alpha\} \cup D^c & \text{if } \alpha < 0, \end{cases}$$

which is measurable in either cases. Hence g is measurable.

(\Leftarrow): The converse follows immediately from (a) since D is measurable and $f = g|_{D}$.

5.* (3rd: P.71, Q22)

- (a) Let f be an extended real-valued function with measurable domain D, and let $D_1 = \{x : f(x) = \infty\}$, $D_2 = \{x : f(x) = -\infty\}$. Then f is measurable if and only if D_1 and D_2 are measurable and the restriction of f to $D \setminus (D_1 \cup D_2)$ is measurable.
- (b) Prove that the product of two measurable extended real-valued function is measurable. (Hint: unlike the case of sums, f(x)g(x) is always of no ambiguity even when f(x) and g(x) are infinite.)
- (c) If f and g are measurable extended real-valued functions and α is a fixed number, then f+g is measurable if we define f+g to be α whenever it is of the form $\infty-\infty$ or $-\infty+\infty$.
- (d) Let f and g be measurable extended real-valued functions that are finite almost everywhere. Then f + g is measurable no matter how it is defined at points where it has the form $\infty \infty$.

Solution. (a) (\Rightarrow): Suppose f is measurable. Then D_1 and D_2 are measurable as usual. Hence $D \setminus (D_1 \cup D_2)$ is measurable, and so is $f|_{D \setminus (D_1 \cup D_2)}$ by 4(a).

 (\Leftarrow) : Suppose D_1 and D_2 are measurable and $f|_{D\setminus (D_1\cup D_2)}$ is measurable. Then, for $\alpha\in\mathbb{R}$.

$${x: f(x) > \alpha} = D_1 \cup {x: f|_{D \setminus (D_1 \cup D_2)} > \alpha}$$

which is measurable. Thus f is measurable.

(b) Let
$$D_1 = \{ fg = \infty \}$$
 and $D_2 = \{ fg = -\infty \}$. Then

$$D_1 = \{ f = \infty, g > 0 \} \cup \{ f = -\infty, g < 0 \} \cup \{ f > 0, g = \infty \} \cup \{ f < 0, g = -\infty \},$$

hence is measurable. Similarly D_2 is also measurable. By (a), it suffices to show that $h := fg|_{D\setminus (D_1\cup D_2)}$ is measurable. Let $\alpha \in \mathbb{R}$. If $\alpha \geq 0$, then

$$\{x:h(x)>\alpha\}=\{x:f\big|_{D\backslash\{f=\pm\infty\}}\cdot g\big|_{D\backslash\{g=\pm\infty\}}>\alpha\},$$

which is measurable; if $\alpha < 0$, then

$$\{x: h(x) > \alpha\} = \{x: f(x) = 0\} \cup \{x: g(x) = 0\} \cup \{x: f\big|_{D \setminus \{f = \pm \infty\}} \cdot g\big|_{D \setminus \{g = \pm \infty\}} > \alpha\},$$

which is also measurable. Thus h is measurable.

Therefore fg is measurable.

(c) Let
$$D_1 := \{f + g = \infty\}$$
 and $D_2 := \{f + g = -\infty\}$. Then

$$D_1 = \{ f \in \mathbb{R}, q = \infty \} \cup \{ f = q = \infty \} \cup \{ f = \infty, q \in \mathbb{R} \}$$

is measurable, and so is D_2 . By (a), it suffices to show that $h := (f+g)\big|_{D\setminus (D_1\cup D_2)}$ is measurable. Let $\beta \in \mathbb{R}$. If $\beta \geq \alpha$, then

$$\{x: h(x) > \beta\} = \{x: f\big|_{D\setminus \{f=\pm\infty\}} + g\big|_{D\setminus \{g=\pm\infty\}} > \beta\},$$

which is measurable; if $\beta < \alpha$, then

$$\{x: h(x) > \beta\} = \{f = \infty, g = -\infty\} \cup \{f = -\infty, g = +\infty\}$$

$$\cup \{x: f\big|_{D \setminus \{f = \pm \infty\}} + g\big|_{D \setminus \{g = \pm \infty\}} > \beta\},$$

which is also measurable. Thus h is measurable.

Therefore f + g is measurable.

(d) Let D_1 , D_2 and h be defined as in (c). Then the sets D_1 , D_2 , $\{x : h(x) > \beta\}$ can be written as unions of sets as in (c), possibly with an additional set of measure zero. Thus these sets are measurable and f + g is measurable.

◀