MATH 4050 Real Analysis Suggested Solution of Homework 3

Only the solutions to * questions are provided.

1.* (3rd: P.52, Q51) (Upper and lower envelopes of a function) Let f be a real-valued function defined on [a, b]. We define the *lower envelope* g of f to be the function g defined by

$$g(y) = \sup_{\delta > 0} \inf_{|x-y| < \delta} f(x),$$

and the *upper envelope* h by

$$h(y) = \inf_{\delta > 0} \sup_{|x-y| < \delta} f(x).$$

Prove the following:

- (a) For each $x \in [a, b]$, $g(x) \leq f(x) \leq h(x)$, and g(x) = f(x) if and only if f is lower semicontinuous at x, while g(x) = h(x) if and only if f is continuous at x.
- (b) If f is bounded, the function g is lower semicontinuous, while h is upper semicontinuous.
- (c) If φ is any lower semicontinuous function such that $\varphi(x) \leq f(x)$ for all $x \in [a, b]$, then $\varphi(x) \leq g(x)$ for all $x \in [a, b]$.

Solution. (a) Let $x \in [a, b]$. Then $\inf_{|y-x| < \delta} f(y) \le f(x) \le \sup_{|y-x| < \delta} f(y)$ for any $\delta > 0$.

Hence

$$g(x) = \sup_{\delta>0} \inf_{|y-x|<\delta} f(y) \le f(x) \le \inf_{\delta>0} \sup_{|y-x|<\delta} f(y) = h(x)$$

Suppose g(x) = f(x). Then given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$f(x) - \varepsilon = g(x) - \varepsilon < f(y)$$
 whenever $y \in [a, b]$ and $|y - x| < \delta$.

So f is lower semicontinuous at x.

Conversely, suppose f is lower semicontinuous at x. Then given $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $y \in [a, b]$ and $|y - x| < \delta$, we have $f(x) - \varepsilon < f(y)$. Thus

$$f(x) - \varepsilon \le \inf_{|y-x| < \delta} f(y) \le g(x).$$

As ε is arbitrary and $g(x) \leq f(x)$, we have g(x) = f(x).

Similarly, one can show h(x) = f(x) if and only if f is upper semicontinuous at x. Finally f is continuous at x if and only if f is both upper semicontinuous and lower semicontinuous at x if and only if h(x) = f(x) = g(x).

(b) Let $x \in [a, b]$. Since f is bounded, we have $g(x) \in \mathbb{R}$. Thus given $\varepsilon > 0$, there exists $\delta > 0$ such that $g(x) < \inf_{|y-x| < \delta} f(y) + \varepsilon$. Note that $(z - \delta/2, z + \delta/2) \subseteq (x - \delta, x + \delta)$ if $|x - z| < \delta/2$. So if $|z - x| < \delta/2$, we have $g(x) < \inf_{|y-x| < \delta} f(y) + \varepsilon \le \inf_{|y-z| < \delta/2} f(y) + \varepsilon \le g(z) + \varepsilon$. Hence g is lower semicontinuous at x.

Similarly we can show that h is upper semicontinuous.

(c) Let φ be the lower envelope of ϕ . Then for any $x \in [a, b]$,

$$\underline{\varphi}(x) = \sup_{\delta > 0} \inf_{|y-x| < \delta} \varphi(y) \le \sup_{\delta > 0} \inf_{|y-x| < \delta} f(y) = g(x),$$

and hence $\varphi(x) = \underline{\varphi}(x) \leq g(x)$, since φ is lower semicontinuous.

2.* (3rd: P.52, Q52)

Let f be a lower semicontinuous function defined for all real numbers. What can you say about the sets $\{x : f(x) > \alpha\}$, $\{x : f(x) \ge \alpha\}$, $\{x : f(x) < \alpha\}$, $\{x : f(x) \le \alpha\}$, and $\{x : f(x) = \alpha\}$?

Solution. Since f is lower semicontinuous, $\{x : f(x) > \alpha\}$ is open. $\{x : f(x) \ge \alpha\} = \bigcap_n \{x : f(x) > \alpha - 1/n\}$ is G_{δ} . $\{x : f(x) \le \alpha\} = \{x : f(x) > \alpha\}^c$ is closed. $\{x : f(x) < \alpha\} = \{x : f(x) \ge \alpha\}^c$ is F_{σ} . $\{x : f(x) = \alpha\} = \{x : f(x) \ge \alpha\} \cap \{x : f(x) \le \alpha\}$ is the intersection of a G_{δ} set with a closed set, so it is also G_{δ} .

3.* (3rd: P.52, Q53; 4th: P.28, Q56)

Let f be a real-valued function defined for all real numbers. Prove that the set of points at which f is continuous is a G_{δ} .

Solution. Let C be the set of points at which f is continuous. Let g and h be the lower and upper envelope of f, respectively.

By Q1(a), we have

$$C = \{x \in [a, b] : f \text{ continuous at } x\}$$

= $\{x \in [a, b] : g(x) = h(x)\}$
= $\bigcap_{n=1}^{\infty} \{x \in [a, b] : h(x) - g(x) < 1/n\}$

(Note that g(x) and h(x) cannot be both $+\infty$ or $-\infty$.)

To see that C is a G_{δ} -set (in [a, b]), it suffices to show that, given any $\lambda > 0$, $A := \{x \in [a, b] : h(x) - g(x) < \lambda\}$ is an open set in [a, b].

Let $x \in A$. Then $h(x), g(x) \in \mathbb{R}$. Set $\varepsilon_0 := (\lambda - (h(x) - g(x))/4 > 0$. By the same argument in 1(b), we can find $\delta > 0$ such that

$$g(x) \le g(z) + \varepsilon_0$$
 and $h(x) \ge h(z) - \varepsilon_0$ for any $z \in V_{\delta}(x) \cap [a, b]$.

Hence for any $z \in V_{\delta}(x)$, we have

$$h(z) - g(z) \le h(x) - g(x) + 2\varepsilon_0 = \frac{h(x) - g(x) + \lambda}{2} < \lambda$$

Thus $V_{\delta}(x) \cap [a, b] \subseteq A$, and A is open.

4.* (3rd: P.52, Q54; 4th: P.28, Q57)

Let $\{f_n\}$ be a sequence of continuous functions defined on \mathbb{R} . Show that the set C of points where this sequence converges is a $F_{\sigma\delta}$.

Solution. Note that $\{f_n\}$ converges at x if and only if for each $k \in N$, there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$, we have $|f_n(x) - f_m(x)| \leq 1/k$. So

$$C = \bigcap_{k \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcap_{n, m \ge N} A_{k, m, n},$$

where $A_{k,m,n} := \{x : |f_n(x) - f_m(x)| \le 1/k\}.$

Since $|f_n - f_m|$ is continuous, $A_{k,m,n}$ is closed and so is $\bigcap_{n,m \ge N} A_{k,m,n}$.

Thus $\{x : (f_n) \text{ converges at } x\}$ is $F_{\sigma\delta}$.