MATH4050 Real Analysis (Revised) Assignment 3

There are 8 questions in this assignment. The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.

1. (3rd: P.52, Q51)

(Upper and lower envelopes of a function) Let f be a real-valued function defined on [a, b]. We define the lower envelope g of f to be the function g defined by

$$g(y) = \sup_{\delta > 0} \inf_{|x-y| < \delta} f(x),$$

and the upper envelope h by

$$h(y) = \inf_{\delta > 0} \sup_{|x-y| < \delta} f(x).$$

Prove the following:

- a. For each $x \in [a, b]$, $g(x) \le f(x) \le h(x)$, and g(x) = f(x) if and only if f is lower semicontinuous at x, while g(x) = h(x) if and only if f is continuous at x.
- b. If f is bounded, the function g is lower semicontinuous, while h is upper semicontinuous.
- c. If φ is any lower semicontinuous function such that $\varphi(x) \leq f(x)$ for all $x \in [a,b]$, then $\varphi(x) \leq g(x)$ for all $x \in [a, b]$.

2. (3rd: P.53, Q52)

Let f be a lower semicontinuous function defined for all real numbers. What can you say about the sets $\{x: f(x) > a\}, \{x: f(x) \ge a\}, \{x: f(x) < a\}, \{x: f(x) \le a\}, \text{ and } \{x: f(x) = a\}$?

⋠3. (3rd: P.53, Q53; 4th: P.28, Q56)

Let f be a real-valued function defined for all real numbers. Prove that the set of points at which

Let f be a real-valued function defined for all real numbers. Prove that the set of points at which f is continuous is a G_{δ} . (f in f is f is f is f is a continuous is a f is f is f is f in f is f is f in f is f in f is f in f is f in f in

For Question 5-7, let m be a countably additive measure defined for all sets in a σ -algebra \mathfrak{M} . Prove that:

- 5. (3rd: P.55, Q1; 4th: P.31, Q1) If A and B are two sets in \mathfrak{M} with $A \subset B$, then $m(A) \leq m(B)$. This property is called monotonicity.
- 6. (3rd: P.55, Q2; 4th: P.31, Q2) Let $\{E_n\}$ be any sequence of sets in \mathfrak{M} . Then $m(\bigcup E_n) \leq \sum mE_n$.
- 7. (3rd: P.55, Q3; 4th: P.31, Q3) If there is a set A in \mathfrak{M} such that $mA < \infty$, then $m\phi = 0$.
- 8. (3rd: P.55, Q4; 4th: P.31, Q4) Let nE be ∞ for an infinite set E and be equal to the number of elements in E for a finite set. Show that n is a countably additive set function that is translation invariant and defined for all sets of real numbers. This measure is called the counting measure.