Solutions of Midterm Exam

- 1. (a) Since $4^2 4 \times 1 \times 1 > 0$, it is of the hyperbolic type.
 - (b) Since $6^2 4 \times 9 \times 1 = 0$, it is of the parabolic type.
 - (c) Since $12^2 4 \times 4 \times 9 = 0$, it is of the parabolic type.
- 2. (a) Fix (x, y). Let z(s) = u(x + s, y + 2s), then

$$z'(s) - 4z(s) = e^{x+y+3s}$$

Since $z(-\frac{y}{2}) = \sin[(x - \frac{y}{2})^2]$,

$$u(x,y) = z(0) = \sin\left[\left(x - \frac{y}{2}\right)^2\right] e^{2y} + \int_{-y/2}^0 e^{-4s} e^{x+y+3s} ds$$
$$= \sin\left[\left(x - \frac{y}{2}\right)^2\right] e^{2y} + e^{x+3y/2} - e^{x+y}.$$

And it is easy to verify that $\sin[(x - \frac{y}{2})^2]e^{2y} + e^{x+3y/2} - e^{x+y}$ is a solution.

(b) Fix (t, x). Let $z(s) = u(t + s, x + \frac{3}{2}s)$, then

$$z'(s) = 0.$$

Since $z(-t) = u(0, x - \frac{3}{2}t) = \sin(x - \frac{3}{2}t),$
 $u(t, x) = z(0) = \sin(x - \frac{3}{2}t).$

And it is easy to verify that $\sin(x - \frac{3}{2}t)$ is a solution.

(c) Fix (t, x). Solve

$$\begin{cases} t'(s) = x(s); \\ x'(s) = -t(s); \\ t(0) = t, \quad x(0) = x. \end{cases}$$

Then we obtain $(t(s), x(s)) = (t \cos s + x \sin s, x \cos s - t \sin s)$. Let z(s) = u(t(s), x(s)), then

$$z'(s) = z(s).$$

Since $z(-\arctan\frac{t}{x}) = x^2 + t^2$,

$$u(t, x) = z(0) = e^{\arctan(t/x)} (x^2 + t^2).$$

And it is easy to verify that $e^{\arctan(t/x)}(x^2 + t^2)$ is a solution.

- 3. (a) A well-posed problem should have the following three properties:
 - Existence: the problem has a solution;
 - Uniqueness: there is at most one solution;
 - Stability: solution depends continuously on the data given in the problem.
 - (b) Since every constant is a solution, the problem does not have uniqueness. So it is not well-posed.
 - (c) It is clear that u_n satisfies the initial and boundary conditions. $\partial_t u_n = -n \sin nx e^{-n^2 t}$ and $\partial_x u_n = -n \sin nx e^{-n^2 t}$. So $\partial_t u_n = \partial_x^2 u_n$ holds. Therefore u_n is a solutions to the problem.

$$E(t, u_n) = \frac{\pi}{2n^2} \mathrm{e}^{-2n^2t}.$$

So $E(t, u_n)$ decreasingly tends to 0 as $t \to +\infty$ and increasingly tends to $+\infty$ as $t \to -\infty$.

- (d) By (c), $\frac{1}{n}\sin nx \to 0$ as $n \to \infty$, but $\sup_{x \in [0,\pi]} \frac{1}{n} |\sin nx| e^{-n^2 t} = \frac{1}{n} e^{-n^2 t} \to \infty$ as $n \to \infty$. So the problem does not have stability and is not well-posed.
- 4. (a) Since a solution to $v_t = v$ is e^t , we may consider $w = e^{-t}v$. By substituting $v = e^t w$ into the equation, we have

$$\mathbf{e}^t(w_t + w) = \mathbf{e}^t w_{xx} + \mathbf{e}^t w.$$

So

$$w_t - w_{xx} = 0.$$

Moreover, $w(0, x) = v(0, x) = \phi(x)$. Therefore,

$$w(t,x) = \int_{\mathbb{R}} S(t,x-y)\phi(y) \,\mathrm{d}y$$

and

$$v(t,x) = e^t \int_{\mathbb{R}} S(t,x-y)\phi(y) \, \mathrm{d}y.$$

And it is easy to verify that the above v is a solution.

(b) Let

$$\widetilde{\phi}(x) = \begin{cases} \phi(x) & x \ge 0; \\ -\phi(-x) & x < 0. \end{cases}$$

Consider the solution to the initial data problem with initial data $\tilde{\phi}$:

$$v(t,x) = \int_{\mathbb{R}} S(t,x-y)\widetilde{\phi}(y) \, \mathrm{d}y$$
$$= \int_{0}^{\infty} (S(t,x-y) - S(t,x+y))\phi(y) \, \mathrm{d}y.$$

Then it is easy to verify that the above v is a solution.

(c) Let

$$\widetilde{\phi}(x) = \begin{cases} \phi(x) & x \ge 0; \\ \phi(-x) & x < 0. \end{cases}$$

Consider the solution the initial data problem with initial data $\tilde{\phi}$:

$$v(t,x) = \int_{\mathbb{R}} S(t,x-y)\widetilde{\phi}(y) \, \mathrm{d}y$$
$$= \int_{0}^{\infty} (S(t,x-y) + S(t,x+y))\phi(y) \, \mathrm{d}y.$$

Then it is easy to verify that the above v is a solution.

5. Let v solve

$$\begin{cases} \Delta v = 0 & \text{in } B_{1/2}; \\ v = u & \text{on } \partial B_{1/2}. \end{cases}$$

We claim that u = v in $B_{1/2} \setminus \{0\}$. Indeed, we can consider w = v - u in $B_{1/2} \setminus \{0\}$ and $M_r = \max_{\partial B_r} |w|$, where 0 < r < 1/2. We observe that

$$|w(x)| \le M_r \frac{\log|x|^{-1}}{\log r^{-1}}$$
 on ∂B_r .

Note that w and $\log |x|^{-1}$ are harmonic in $B_{1/2} \setminus \overline{B_r}$. Hence the maximum principle implies

$$|w(x)| \le M_r \frac{\log|x|^{-1}}{\log r^{-1}}$$
 for any $x \in B_{1/2} \setminus B_r$.

Note also that, for all $r \in (0, 1/2)$,

$$M_r \le \max_{\partial B_r} |u(x)| + \max_{\partial B_r} |v(x)| \le \max_{\partial B_r} |u(x)| + \max_{\partial B_{1/2}} |u(x)|.$$

Combining the above estimates, we have for each fixed $x \neq 0$,

$$|w(x)| \le \frac{\log|x|^{-1}}{\log r^{-1}} \left(\max_{\partial B_r} |u(x)| + \max_{\partial B_{1/2}} |u(x)| \right) \to 0 \text{ as } r \to 0,$$

that is w = 0 in $B_{1/2} \setminus \{0\}$. Therefore, u can be defined at 0 via v to make it be C^2 and harmonic in B_1 .

6. Obviously, 0 is a solution. We only need to show that solution satisfying the conditions

is 0. First, by the mean value property, the condition

$$\lim_{r \to \infty} \left(\max_{|x|=r} \int_{B_1(x)} u(\xi) \,\mathrm{d}\xi \right) = 0$$

is equivalent to

$$\lim_{r \to \infty} \max_{|x|=r} u(x) = 0.$$

To use the Harnack inequality, by considering -u, we could assume that

$$\lim_{r \to \infty} \min_{|x|=r} u(x) = 0.$$

Next we show that $u \ge 0$. Fix x. For arbitrary $\varepsilon > 0$, suppose that

$$\min_{|x|=R} u > -\varepsilon,$$

where R > |x|. Then by applying the minimum principle to $\{1 < |x| < R\}$,

$$u(x) \ge -\varepsilon.$$

Let $\varepsilon \to 0$, then we obtain $u(x) \ge 0$.

Next we prove a lemma that is a variant of the Harnack inequality.

Lemma 0.1 Suppose that u is C^2 , harmonic, and non-negative in $\{|x| > 1\}$. Then there is a universal constant C such that

$$u(x) \le Cu(y)$$

for all $|x| = |y| \ge 2$.

Proof. Our method is scaling argument. By the Harnack inequality, we have

$$u(x) \le Cu(y)$$

for all |x| = |y| = 2. For R > 2, consider u(Rx/2), which is C^2 , harmonic, and non-negative in $\{|x| > 1\}$. Substituting it into the Harnack inequality, we have

 $u(x) \le Cu(y)$

for all |x| = |y| = R. So the lemma is proved.

Finally, we use this lemma to prove that u = 0. Fix x. For arbitrary $\varepsilon > 0$, take R large enough such that $R > \max\{|x|, 2\}$ and $\min_{|x|=R} u(x) < \varepsilon$. Then by the lemma,

$$\max_{|x|=R} u(x) \le C \min_{|x|=R} u(x) \le C\varepsilon.$$

Applying the maximum principle to $\{1 < |x| < R\}$, we have

$$u(x) \le C\varepsilon.$$

Let $\varepsilon \to 0$, then we obtain u(x) = 0. So the proof is concluded.