Solutions of Midterm Exam

1. (a) Since 4> — 4 x 1 x 1 > 0, it is of the hyperbolic type.
(b) Since 62 — 4 x 9 x 1 = 0, it is of the parabolic type.
(c) Since 122 — 4 x 4 x 9 = 0, it is of the parabolic type.

2. (a) Fix (z,y). Let z(s) = u(z + s,y + 2s), then

2 (s) — 4z(s) = e™T¥T3s,
Since z(—%) = sin[(z — ¥)?],

0
u(z,y) = 2(0) = sin[(z — ¥)2)e? + / / ooyt 4
—y/2

= sin[(z — £)%)e® + eH/2 _ ety
And it is easy to verify that sin[(z — £)%e® + e*™3%/2 — e*™¥ is a solution.
(b) Fix (t,z). Let z(s) = u(t + s,z + 3s), then
Z'(s) = 0.
Since z(—t) = u(0, 7 — 2t) = sin(z — 3t),

u(t, ) = z(0) = sin(z — 3t).
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And it is easy to verify that sin(z — 5t) is a solution.

(c) Fix (¢, x). Solve

t(0) =t, x(0)==z.
Then we obtain (t(s),z(s)) = (tcoss + xsins,zcoss — tsins). Let z(s) =

u(t(s), z(s)), then

Since z(—arctan £) = 2? + 2,

u(t,x) _ Z(O) _ earctan(t/x) (1,2 + t2)



And it is easy to verify that e?™tn(t/2) (22 1 #2) is a solution.
3. (a) A well-posed problem should have the following three properties:
* Existence: the problem has a solution;
» Uniqueness: there is at most one solution;
* Stability: solution depends continuously on the data given in the problem.

(b) Since every constant is a solution, the problem does not have uniqueness. So it is not

well-posed.

(c) Itis clear that u,, satisfies the initial and boundary conditions. d;u,, = —n sin nre "t
and J,u,, = —nsin nze ™t So Oy, = 0%u,, holds. Therefore u, is a solutions to
the problem.

™ 2
E(t,u,) = —e 2"t
(t, un) 2n?

So E(t,u,) decreasingly tends to 0 as t — o0 and increasingly tends to +oco as
t — —00.

(d) By (¢), sinnz — 0 asn — oo, but SUD,(0,] L]sin nzle ™t = Le™"*t 5 o0 as

’Vl

n — o0. So the problem does not have stability and is not well-posed.

4. (a) Since a solution to v; = v is ', we may consider w = e~'v. By substituting v = e‘w

into the equation, we have

el (w; +w) = e'wg, + e'w.

So
Wy — Wy = 0.
Moreover, w(0,z) = v(0, z) = ¢(x). Therefore,
w(t, x) /S (t,x —y)o(y) dy
and

o(t,z) = ¢ / S(t,x — y)oly) dy.

And it is easy to verify that the above v is a solution.
(b) Let
~ o(x) x > 0;



Consider the solution to the initial data problem with initial data 25:
ofter) = [ it = )ity dy
R
— [ (S(t.o—9) = St + 1)ol) dy.
0

Then it is easy to verify that the above v is a solution.
(c) Let
~ o(x) x>0
¢(x) =
¢(—x) x<0.

Consider the solution the initial data problem with initial data &:
v(t, x) / S(t,x —y)o(y) dy
—/i@@w—)+S@x+wW@My
0

Then it is easy to verify that the above v is a solution.

5. Let v solve
Av =0 1in By;
v=1u on 9By 5.
We claim that uw = v in By 2 \ {0}. Indeed, we can consider w = v — u in By, \ {0} and
M, = maxpp, |w|, where 0 < r < 1/2. We observe that

—1
w(a)] < b, 2B
log r—1

Note that w and log || ~! are harmonic in By j»\ B,.. Hence the maximum principle implies

on 0B,.

log|z |*1

lw(z)| < M, forany x € By \ B;.

log r—
Note also that, for all » € (0,1/2),

< < .
M, < max |u(z)| + max |v(2)] < max |u(z)| + max |u(z)|

1/2

Combining the above estimates, we have for each fixed x # 0,

()] < 282 (o ) + max [u(z)| ) - 0asr -0
~ logr—! \ 9B, By s ’

that is w = 0 in By, \ {0}. Therefore, u can be defined at 0 via v to make it be C* and

harmonic in B;.

6. Obviously, 0 is a solution. We only need to show that solution satisfying the conditions



is 0. First, by the mean value property, the condition
lim (max/ u(§) d§> =0
T—>00 |x‘:r B1 (CC)
is equivalent to
lim maxu(z) = 0.

T—>00 |Qj|:7"

To use the Harnack inequality, by considering —u, we could assume that
lim minu(z) = 0.
r—00 |z|=r
Next we show that v > 0. Fix x. For arbitrary £ > 0, suppose that
min u > —¢,
|z|=R
where R > |x|. Then by applying the minimum principle to {1 < |z| < R},
u(z) > —e.
Let ¢ — 0, then we obtain u(x) > 0.

Next we prove a lemma that is a variant of the Harnack inequality.

Lemma 0.1 Suppose that u is C*, harmonic, and non-negative in {|z| > 1}. Then there

is a universal constant C such that
u(z) < Cu(y)

Sforall |x| = |y| > 2.

Proof. Our method is scaling argument. By the Harnack inequality, we have
u(z) < Cu(y)

for all |z| = |y| = 2. For R > 2, consider u(Rz/2), which is C?, harmonic, and non-

negative in {|z| > 1}. Substituting it into the Harnack inequality, we have
u(r) < Cu(y)

for all |x| = |y| = R. So the lemma is proved. O
Finally, we use this lemma to prove that u = 0. Fix x. For arbitrary ¢ > 0, take R large
enough such that R > max{|z|, 2} and minj,—z u(x) < €. Then by the lemma,

max u(z) < C min u(z) < Ce.

|z|=R lz|=R
Applying the maximum principle to {1 < |z| < R}, we have

u(z) < Ce.

Let ¢ — 0, then we obtain u(x) = 0. So the proof is concluded.



