
Solutions of Midterm Exam

1. (a) Since 42 − 4× 1× 1 > 0, it is of the hyperbolic type.

(b) Since 62 − 4× 9× 1 = 0, it is of the parabolic type.

(c) Since 122 − 4× 4× 9 = 0, it is of the parabolic type.

2. (a) Fix (x, y). Let z(s) = u(x+ s, y + 2s), then

z′(s)− 4z(s) = ex+y+3s.

Since z(−y
2
) = sin[(x− y

2
)2],

u(x, y) = z(0) = sin[(x− y
2
)2]e2y +

∫ 0

−y/2

e−4sex+y+3s ds

= sin[(x− y
2
)2]e2y + ex+3y/2 − ex+y.

And it is easy to verify that sin[(x− y
2
)2]e2y + ex+3y/2 − ex+y is a solution.

(b) Fix (t, x). Let z(s) = u(t+ s, x+ 3
2
s), then

z′(s) = 0.

Since z(−t) = u(0, x− 3
2
t) = sin(x− 3

2
t),

u(t, x) = z(0) = sin(x− 3
2
t).

And it is easy to verify that sin(x− 3
2
t) is a solution.

(c) Fix (t, x). Solve 
t′(s) = x(s);

x′(s) = −t(s);

t(0) = t, x(0) = x.

Then we obtain (t(s), x(s)) = (t cos s + x sin s, x cos s − t sin s). Let z(s) =

u(t(s), x(s)), then

z′(s) = z(s).

Since z(− arctan t
x
) = x2 + t2,

u(t, x) = z(0) = earctan(t/x)(x2 + t2).
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And it is easy to verify that earctan(t/x)(x2 + t2) is a solution.

3. (a) A well-posed problem should have the following three properties:

• Existence: the problem has a solution;

• Uniqueness: there is at most one solution;

• Stability: solution depends continuously on the data given in the problem.

(b) Since every constant is a solution, the problem does not have uniqueness. So it is not

well-posed.

(c) It is clear that un satisfies the initial and boundary conditions. ∂tun = −n sinnxe−n2t

and ∂xun = −n sinnxe−n2t. So ∂tun = ∂2
xun holds. Therefore un is a solutions to

the problem.

E(t, un) =
π

2n2
e−2n2t.

So E(t, un) decreasingly tends to 0 as t → +∞ and increasingly tends to +∞ as

t → −∞.

(d) By (c), 1
n
sinnx → 0 as n → ∞, but supx∈[0,π]

1
n
|sinnx|e−n2t = 1

n
e−n2t → ∞ as

n → ∞. So the problem does not have stability and is not well-posed.

4. (a) Since a solution to vt = v is et, we may consider w = e−tv. By substituting v = etw

into the equation, we have

et(wt + w) = etwxx + etw.

So

wt − wxx = 0.

Moreover, w(0, x) = v(0, x) = ϕ(x). Therefore,

w(t, x) =

∫
R
S(t, x− y)ϕ(y) dy

and

v(t, x) = et
∫
R
S(t, x− y)ϕ(y) dy.

And it is easy to verify that the above v is a solution.

(b) Let

ϕ̃(x) =

ϕ(x) x ≥ 0;

−ϕ(−x) x < 0.
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Consider the solution to the initial data problem with initial data ϕ̃:

v(t, x) =

∫
R
S(t, x− y)ϕ̃(y) dy

=

∫ ∞

0

(S(t, x− y)− S(t, x+ y))ϕ(y) dy.

Then it is easy to verify that the above v is a solution.

(c) Let

ϕ̃(x) =

ϕ(x) x ≥ 0;

ϕ(−x) x < 0.

Consider the solution the initial data problem with initial data ϕ̃:

v(t, x) =

∫
R
S(t, x− y)ϕ̃(y) dy

=

∫ ∞

0

(S(t, x− y) + S(t, x+ y))ϕ(y) dy.

Then it is easy to verify that the above v is a solution.

5. Let v solve ∆v = 0 in B1/2;

v = u on ∂B1/2.

We claim that u = v in B1/2 \ {0}. Indeed, we can consider w = v− u in B1/2 \ {0} and
Mr = max∂Br |w|, where 0 < r < 1/2. We observe that

|w(x)| ≤ Mr
log|x|−1

log r−1
on ∂Br.

Note thatw and log |x|−1 are harmonic inB1/2\Br. Hence themaximum principle implies

|w(x)| ≤ Mr
log|x|−1

log r−1
for any x ∈ B1/2 \Br.

Note also that, for all r ∈ (0, 1/2),

Mr ≤ max
∂Br

|u(x)|+max
∂Br

|v(x)| ≤ max
∂Br

|u(x)|+ max
∂B1/2

|u(x)|.

Combining the above estimates, we have for each fixed x ̸= 0,

|w(x)| ≤ log|x|−1

log r−1

(
max
∂Br

|u(x)|+ max
∂B1/2

|u(x)|
)

→ 0 as r → 0,

that is w = 0 in B1/2 \ {0}. Therefore, u can be defined at 0 via v to make it be C2 and

harmonic in B1.

6. Obviously, 0 is a solution. We only need to show that solution satisfying the conditions
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is 0. First, by the mean value property, the condition

lim
r→∞

(
max
|x|=r

∫
B1(x)

u(ξ) dξ

)
= 0

is equivalent to

lim
r→∞

max
|x|=r

u(x) = 0.

To use the Harnack inequality, by considering −u, we could assume that

lim
r→∞

min
|x|=r

u(x) = 0.

Next we show that u ≥ 0. Fix x. For arbitrary ε > 0, suppose that

min
|x|=R

u > −ε,

where R > |x|. Then by applying the minimum principle to {1 < |x| < R},

u(x) ≥ −ε.

Let ε → 0, then we obtain u(x) ≥ 0.

Next we prove a lemma that is a variant of the Harnack inequality.

Lemma 0.1 Suppose that u is C2, harmonic, and non-negative in {|x| > 1}. Then there

is a universal constant C such that

u(x) ≤ Cu(y)

for all |x| = |y| ≥ 2.

Proof. Our method is scaling argument. By the Harnack inequality, we have

u(x) ≤ Cu(y)

for all |x| = |y| = 2. For R > 2, consider u(Rx/2), which is C2, harmonic, and non-

negative in {|x| > 1}. Substituting it into the Harnack inequality, we have

u(x) ≤ Cu(y)

for all |x| = |y| = R. So the lemma is proved. □

Finally, we use this lemma to prove that u = 0. Fix x. For arbitrary ε > 0, take R large

enough such that R > max{|x|, 2} and min|x|=R u(x) < ε. Then by the lemma,

max
|x|=R

u(x) ≤ C min
|x|=R

u(x) ≤ Cε.

Applying the maximum principle to {1 < |x| < R}, we have

u(x) ≤ Cε.

Let ε → 0, then we obtain u(x) = 0. So the proof is concluded.
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