
Solutions of Homework III

1. (i)

∆w = 2u∆u+ 2v∆v + 2|∇u|2 + 2|∇v|2

= −2(1− w)w + 2|∇u|2 + 2|∇v|2.

So the equation w satisfies is

∆w = −2(1− w)w + 2|∇u|2 + 2|∇v|2. (1)

(ii) Assume that w attains its maximumM at x0. If x0 ∈ B(0, 1), then∆w(x0) ≤ 0. By

(1), −(1 −M)M ≤ 0. So M ≤ 1. If x0 ∈ ∂B(0, 1), then M = 0 ≤ 1. Therefore

M ≤ 1.

2. (i) For the equations {
xfx + yfy = xy log(xy); (2)

x2fxx + y2fyy = xy, (3)
consider x(2)x + y(2)y, we have

x2fxx + y2fyy + xfx + yfy + 2xyfxy = 2xy(log(xy) + 1).

Substituting (2) and (3) into it, we obtain that

fxy =
log(xy) + 1

2
.

(ii)

f(s+ 1, s+ 1)− f(s+ 1, s)− f(s, s+ 1) + f(s, s)

=

∫ 1

0

(fy(s+ 1, s+ q)− fy(s, s+ q)) dq

=

∫ 1

0

∫ 1

0

fxy(s+ p, s+ q) dp dq

=

∫
[0,1]2

log[(s+ p)(s+ q)] + 1

2
dp dq.

So

m(f) = min
s≥1

∫
[0,1]2

log[(s+ p)(s+ q)] + 1

2
dp dq
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=

∫
[0,1]2

log[(1 + p)(1 + q)] + 1

2
dp dq

=
4 log 2− 1

2
,

and it is independent of f .

3. (i) By the strong maximum principle, since 0 ≤ u ≤ 1 on the parabolic boundary and u

is not a constant, 0 < u(t, x) < 1 for all (t, x) ∈ R+ × (0, 1).

(ii) Since u(t, x) and u(t, 1− x) are solutions to the heat equation and they agree on the

parabolic boundary, by the uniqueness of initial boundary problems of heat equations,

u(t, x) = u(t, 1− x) for all t ≥ 0 and 0 ≤ x ≤ 1.

(iii) We have
d

dt

∫ 1

0

u2 =

∫ 1

0

2uut

=

∫ 1

0

2uuxx

= −
∫ 1

0

2u2
x.

Moreover, ∫ 1

0

u2
x ̸= 0.

In fact, if ∫ 1

0

ux(t, x)
2 dx = 0,

then ux(t, x) = 0 for all 0 ≤ x ≤ 1. Since u(t, 0) = 0, u(t, x) = 0 for all 0 ≤ x ≤ 1,

which contradicts the conclusion of (i). Therefore

−
∫ 1

0

2u2
x < 0

and
∫ 1

0
u2 is strictly decreasing.

4. (i) Since a solution to ut = u is et, we may consider v = e−tu. By substituting u = etv

into the equation, we have

et(vt + v) = etvxx + etv.

So

vt − vxx = 0.

Moreover, v(0, x) = u(0, x) = ϕ(x). Therefore,

v(t, x) =

∫
S(t, x− y)ϕ(y) dy
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and

u(t, x) = et
∫

S(t, x− y)ϕ(y) dy.

And it is easy to verify that the above u is a solution.

(ii) Since a solution to ut = t2u is et3/3, we may consider v = e−t3/3u. By substituting

u = et
3/3v into the equation, we have

et
3/3vt + t2et

3

v = et
3/3vxx + t2et

3/3v.

So

vt − vxx = 0.

Moreover, v(0, x) = u(0, x) = ϕ(x). Therefore,

v(t, x) =

∫
S(t, x− y)ϕ(y) dy

and

u(t, x) = et
3/3

∫
S(t, x− y)ϕ(y) dy.

And it is easy to verify that the above u is a solution.

(iii) Consider v(t, x) = u(t, x− t). Then

vt(t, x) = ut(t, x− t)− ux(t, x− t) = uxx(t, x− t) = vxx(t, x).

Moreover, v(0, x) = u(0, x) = ϕ(x). Therefore,

v(t, x) =

∫
S(t, x− y)ϕ(y) dy

and

u(t, x) = v(t, t+ x) =

∫
S(t, t+ x− y)ϕ(y) dy.

And it is easy to verify that the above u is a solution.

5. (i) Since v is a solution of the heat equation, w is also a solution of the heat equation.

vx(t, x) =
1√
4πt

∫
∂x

(
e−

(x−y)2

4t

)
f(y) dy

= − 1√
4πt

∫
∂y

(
e−

(x−y)2

4t

)
f(y) dy

= − 1√
4πt

∫ 0

−∞
∂y

(
e−

(x−y)2

4t

)
f(y) dy − 1√

4πt

∫ ∞

0

∂y

(
e−

(x−y)2

4t

)
f(y) dy

=
1√
4πt

∫ 0

−∞
e−

(x−y)2

4t f ′(y) dy − 1√
4πt

e−
x2

4t f(0)

+
1√
4πt

∫ ∞

0

e−
(x−y)2

4t f ′(y) dy +
1√
4πt

e−
x2

4t f(0)

3



=
1√
4πt

∫
e−

(x−y)2

4t f ′(y) dy.

So

vx − 2v =
1√
4πt

∫
e−

(x−y)2

4t (f ′(y)− 2f(y)) dy.

Since f ′− 2f is continuous on R \ {0} and (f ′− 2f)(0+) = 1 and (f ′− 2f)(0−) =

−1,

w(0, x) =


1− 2x x > 0;

0 x = 0;

−1− 2x x < 0.

(ii) It is clear that

f ′(x)− 2f(x) + f ′(−x)− 2f(−x) = 0

for all x ̸= 0. So f ′ − 2f is an odd function for x ̸= 0.

(iii) Let g = f ′ − 2f . Then

w(t, x) =
1√
4πt

∫
e−

y2

4t g(x− y) dy.

w(t,−x) =
1√
4πt

∫
e−

y2

4t g(−x− y) dy

=
1√
4πt

∫
e−

y2

4t g(−x+ y) dy

= − 1√
4πt

∫
e−

y2

4t g(x− y) dy

= −w(t, x).

Hence w(t, x) is an odd function of x.

(iv) It suffices to prove that

vx(t, 0)− 2v(t, 0) = 0

for t > 0. Since w is an odd function of x, it holds.

6. Solve the ODE f ′(x)− hf(x) = −ϕ′(−x) + hϕ(−x)

f(0) = ϕ(0).

on (−∞, 0]. Denote the solution

ϕ(0)ehx +

∫ x

0

eh(x−y)(−ϕ′(−y) + hϕ(−y)) dy
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by g(x). Then let

f̃(x) =

ϕ(x) x ≥ 0;

g(x) x < 0.

and

u(t, x) =
1√
4πt

∫
e−

(x−y)2

4t f̃(y) dy.

Similar to Exercise 5, we could verify that u is a solution to the problem.
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