
Solutions of Homework II

1. (i) By the spherical coordinate representation of the Laplacian, let u = f(r), then

f ′′(r) +
2

r
f ′(r) = f(r).

Let f(r) = r−1g(r), then

f ′(r) =
1

r
g′(r)− 1

r2
g(r)

f ′′(r) =
1

r
g′′(r)− 2

r2
g′(r) +

2

r3
g(r).

Therefore,

g′′(r) = g(r).

So

g(r) = Aer +Be−r,

and

f(r) =
1

r
(Aer +Be−r).

(ii) We find a spherically symmetric solution u = f(r). By the spherical coordinate

representation of the Laplacian,

f ′′(r) +
2

r
f ′(r) = 0,

and f(a) = A and f(b) = B. Then f ′(r) = C1r
−2 and f(r) = −C1r

−1 + C2.

By the boundary conditions,

f(r) =
A−B

1/a− 1/b
r−1 +

−A/b+B/a

1/a− 1/b
.

Since the solution of the Dirichlet problem is unique, the solution is the above

f .

(iii) We find a spherically symmetric solution u = f(r). By the spherical coordinate

representation of the Laplacian,

f ′′(r) +
1

r
f ′(r) = 1,

and f(a) = 0 and f(b) = 0. Then f ′(r) = r/2 + C1r
−1 and f(r) = r2/4 +
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C1 log r + C2. By the boundary conditions,

f(r) = − a2 − b2

4(log a− log b)
log r +

a2 log b− b2 log a

4(log a− log b)
+

r2

4
.

Since the solution of the Dirichlet problem is unique, the solution is the above

f .

(iv) We find a spherically symmetric solution u = f(r). By the spherical coordinate

representation of the Laplacian,

f ′′(r) +
2

r
f ′(r) = 1,

and f(a) = 0 and f(b) = 0. Then f ′(r) = r/3 + C1r
−2 and f(r) = r2/6 +

C1r
−1 + C2. By the boundary conditions,

f(r) =
ab(a+ b)

6
r−1 − a2 + ab+ b2

6
+

r2

6
.

Since the solution of the Dirichlet problem is unique, the solution is the above

f .

(v) Suppose that ∫
D

f ̸=
∫
∂D

g.

Since ∫
D

∆u =

∫
∂D

∂u

∂n
,

and ∆u = f and ∂u
∂n

= g, we have∫
D

f =

∫
∂D

g,

which is contradiction.

2. (i) Suppose that h ̸= 0. By the maximum principle, u ≥ 0. Suppose that u vanish

at some point x0. Then by the Harnack inequality, u(0) = 0 and u = 0. Hence

h = 0, which is contradiction.

(ii) By the maximum principle, u ≥ 0. By the Harnack inequality,
1− 1/2

1 + 1/2
u(0) ≤ u(x, y) ≤ 1 + 1/2

1− 1/2
u(0)

for x2 + y2 = 1/4. Therefore,
1

3
≤ u(x, y) ≤ 3

for x2 + y2 = 1/4.
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3. (i) Suppose that u1 and u2 satisfy the equation. Let v = u1 − u2, then∆v = u3
1 − u3

2 in D;

∂v

∂n
+ a(x)v = 0 on ∂D.

Since ∫
D

v∆v =

∫
∂D

∂v

∂n
v −

∫
|∇v|2,∫

D

(u3
1 − u3

2)v = −
∫
∂D

a(x)v2 −
∫

|∇v|2.

The left hand side is equal to∫
D

v2(u2
1 + u1u2 + u2

2) ≥ 0.

The right hand side is less than or equal to 0 because a(x) ≥ 0. So∫
D

v2(u2
1 + u1u2 + u2

2) = 0

and u1 = u2.
(ii) (a)

E[u] =

∫
D

(
1

2
|∇u|2 + 1

2
bu2 + fu

)
dx.

The admissible set is

{u ∈ C2(D) | u = h on ∂D}.

(b) Only if: We only need to prove that for a solution u,

E[u+ v] ≥ E[u]

for all v ∈ C2(D) satisfying that v = 0 on ∂D.

E[u+ v]− E[u] =

∫
D

(∇u · ∇v + buv + fv) +

∫
D

(
1

2
|∇v|2 + 1

2
bv2

)
≥

∫
D

(∇u · ∇v + buv + fv) .

By integration by parts,∫
D

(∇u · ∇v + buv + fv) =

∫
D

(−∆u+ bu+ f) v +

∫
∂D

∂u

∂n
v = 0.

Hence

E[u+ v] ≥ E[u].

If: Suppose that

E[w] ≥ E[u]

for all w ∈ C2(D) satisfying that w = h on ∂D. Consider w = u + tη
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where η ∈ C2
c (D), then w ∈ C2(D) satisfies that w = h on ∂D. Therefore,

f(t) = E[u+ tη] ≥ E[u].

So

f ′(0) =

∫
D

(∇u · ∇η + buη + fη) = 0.

By integration by parts, it follows that∫
D

(−∆u+ bu+ f)η = 0

for all η ∈ C2
c (D). Hence u is a solution to the equation.

(iii) For z = (x, y), let zl = (−x, y), zd = (x,−y) and zld = (−x,−y). Then it is

easy to see that

Γ(z, z′)− Γ(zl, z
′)− Γ(zd, z

′) + Γ(zld, z
′)

is the Green’s function. So∫ ∞

0

1

π

(
x

x2 + (y − y′)2
− x

x2 + (y + y′)2

)
g(y′) dy′

+

∫ ∞

0

1

π

(
y

(x− x′)2 + y2
− y

(x+ x′)2 + y2

)
h(x′) dx′

is the solution formula for u(x, y).

4. We use u,i to denote ∂iu.

(i) It is easy to see that

∆v(x) = ∆u(x− y).

So v is harmonic.

(ii) It is easy to see that

∆v(x) = λ2∆u(λx).

So v is harmonic.

(iii) Suppose that (Ox)i = aijxj . Then

v,i(x) =
3∑

k=1

u,k(Ox)aki;

v,ii(x) =
3∑

k,l=1

u,kl(Ox)akiali.

Since O is orthogonal,

OOT = I,
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and
3∑

i=1

akiali = δkl.

Therefore,

∆v(x) = ∆u(Ox),

and v is harmonic.

(iv) It is easy to verify that

∆(fg) = (∆f)g + 2∇f · ∇g + f(∆g).

Note that ∆|x|−1 = 0. We have

∆v = 2∇|x|−1 · ∇(u(x∗)) + |x|−1∆(u(x∗)),

where x∗ = x/|x|2.

(u(x∗)),i =
3∑

k=1

u,k(x
∗)(x∗)k,i;

(u(x∗)),ii =
3∑

k,l=1

u,kl(x
∗)(x∗)k,i(x

∗)l,i +
3∑

k=1

u,k(x
∗)(x∗)k,ii.

(x∗)i,j = |x|−4(δij|x|2 − 2xixj).

If we let matrix A = ((x∗)i,j), then

A = |x|−4(|x|2I − 2xxT ),

where x denotes a column vector. Then

AAT = |x|−8(|x|4I − 4|x|2xxT + 4|x|2xxT ) = |x|−4I.

So
3∑

k,l,i=1

u,kl(x
∗)(x∗)k,i(x

∗)l,i = |x|−4∆u(x∗) = 0.

To prove v is harmonic, it suffices to prove that

2
3∑

k,i=1

(|x|−1),iu,k(x
∗)(x∗)k,i +

3∑
k,i=1

u,k(x
∗)|x|−1(x∗)k,ii = 0.

It suffices to prove that
3∑

i=1

2(|x|−1),i(x
∗)k,i + |x|−1(x∗)k,ii = 0.

That is,

2∇|x|−1 · ∇(x∗)k + |x|−1∆(x∗)k = 0.
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Since ∆|x|−1 = 0,

∆(|x|−1(x∗)k) = 2∇|x|−1 · ∇(x∗)k + |x|−1∆(x∗)k.

So it suffices to prove that

∆(|x|−1(x∗)k) = 0.

Note that

|x|−1x∗ =
x

|x|3
= −∇|x|−1.

Therefore,

∆(|x|−1(x∗)k) = 0

since ∆|x|−1 = 0.

5. Let f solve ∆f = div E⃗ in B1;

f = 0 on ∂B1.

Let F⃗ = ∇f and G⃗ = E⃗ − F⃗ , then it is easy to see that E⃗ = F⃗ + G⃗, curl F⃗ = 0,

and div G⃗ = 0.
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