
Solutions to Final Exam

1. (a) ∫
R
S(t, x) dx =

∫
R

1√
4πt

e−x2/4t dx.

By change of variables and the Gaussian integral,∫
R
S(t, x) dx =

∫
R

1√
π
e−x2

dx = 1.

(b)

max
δ<|x|<∞

S(t, x) ≤ 1√
4πt

e−δ2/4t.

So

max
δ<|x|<∞

S(t, x) → 0

as t → 0.

2. Suppose that fn → f uniformly, that is,

sup
I
|fn − f | → 0.

Since ∫
I

|fn − f |2 ≤ |I|
(
sup
I
|fn − f |

)2

,

fn → f in the L2 sense. Since

|fn(x)− f(x)| ≤ sup
I
|fn − f |

for x ∈ I , fn → f in the pointwise sense.

3. (a) For (t, x) ∈ (0,∞)×(0, 1), since 0 ≤ u ≤ 1 on the parabolic boundary (0, 1)× (0, t]\
(0, 1)× (0, t], by the maximum principle, 0 ≤ u(t, x) ≤ 1.

(b) Let u1(t, x) = u(t, x) and u2(t, x) = u(t, 1 − x), then u1 and u2 satisfy the heat

equation, u1(t, 0) = u2(t, 0), u1(t, 1) = u2(t, 1), and u1(0, x) = u2(0, x). So by

the uniqueness of initial boundary problems of heat equations, we have u1(t, x) =

u2(t, x) for all (t, x) ∈ [0,∞)× [0, 1].

(c) Since
d

dt

∫ 1

0

u2(t, x) dx =

∫ 1

0

2uut dx
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=

∫ 1

0

2uuxx dx

= −
∫ 1

0

2u2
x dx

≤ 0,

where the boundary terms of the integration by parts vanish since u vanishes on the

boundary,
∫ 1

0
u2(t, x) dx is a decreasing function of t.

4. (a) For u1 and u2 satisfying the problem, consider v = u1 − u2, then v satisfies that
vt − vxx = 0 (t, x) ∈ (0,∞)× (0, ℓ);

vx(t, 0) = vx(t, ℓ) = 0 t ∈ (0,∞);

v(0, x) = 0 x ∈ [0, 1].

Consider

E(t) =

∫ ℓ

0

v2(t, x) dx.

Then
dE(t)

dt
=

∫ ℓ

0

2vvt dx

=

∫ ℓ

0

2vvxx dx

= −
∫ ℓ

0

2v2x dx

≤ 0,

where the boundary terms of the integration by parts vanish since vx vanishes on the

boundary. Since E(0) = 0, E(t) = 0 and v = 0.

(b) Let u = e−tv, then

e−tvt − e−tv − e−tvxx + e−tv = 0,

giving that

vt − vxx = 0.

Moreover,

v(0, x) = u(0, x) = ϕ(x).

So

v(t, x) =

∫
R
S(t, x− y)ϕ(y) dy.
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Therefore

u(t, x) = e−tv(t, x) = e−t

∫
R
S(t, x− y)ϕ(y) dy,

and it is easy to verify that u is a solution.

(c) Let u = e−t3/3v, then

e−t3/3vt − t2e−t3/3v − e−t3/3vxx + t2e−t3/3v = 0,

giving that

vt − vxx = 0.

Moreover,

v(0, x) = u(0, x) = ϕ(x).

So

v(t, x) =

∫
R
S(t, x− y)ϕ(y) dy.

Therefore

u(t, x) = e−t3/3v(t, x) = e−t3/3

∫
R
S(t, x− y)ϕ(y) dy,

and it is easy to verify that u is a solution.

5. (a) By d’Alembert’s formula,

u(t, x) =
ex+t + ex−t

2
+

1

2

∫ x+t

x−t

sin s ds

=
ex+t + ex−t

2
+

cos(x− t)− cos(x+ t)

2
.

(b) By d’Alembert’s formula,

u(t, x) =
log[1 + (x+ t)2] + log[1 + (x− t)2]

2
+

1

2

∫ x+t

x−t

(4 + s) ds

=
log[1 + (x+ t)2] + log[1 + (x− t)2]

2
+

(4 + x+ t)2 − (4 + x− t)2

4

=
log[1 + (x+ t)2] + log[1 + (x− t)2]

2
+ t(4 + x).

6. (a)

An =
1

π

∫ π

−π

x cosnx dx = 0;

Bn =
1

π

∫ π

−π

x sinnx dx =
2(−1)n+1

n
.

So

x =
∞∑
n=1

2(−1)n+1

n
sinnx.
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(b) First we find separated solutions u(t, x) = T (t)X(x). Then

T ′′(t)X(x) = T (t)X ′′(x),

giving that

−T ′′(t)

T (t)
= −X ′′(x)

X(x)
= λ.

X(x) satisfies that X(0) = X(π) = 0. If λ = 0, then X(x) = Ax + B. From

the boundary conditions, A = B = 0. If λ ̸= 0, suppose that −λ = β2, then

X(x) = Aeβx +Be−βx. From the boundary conditions,∣∣∣∣∣∣ 1 1

eβπ e−βπ

∣∣∣∣∣∣ = 0.

So β = ni and λ = n2 for n ∈ Z \ {0}. Then Xn(x) = sinnx for n ∈ N+. Then

Tn(t) = An cosnt+Bn sinnt. By (a),

x =
∞∑
n=1

2(−1)n+1

n
sinnx.

Moreover,

0 =
∞∑
n=1

0 sinnx.

Therefore,

u(t, x) =
∞∑
n=1

2(−1)n+1

n
cosnt sinnx.

7. (a) We first prove that

v(x) ≤ 1

4πr2

∫
∂Br(x)

v(y) dy.

1

4πr2

∫
∂Br(x)

v(y) dy =
1

4π

∫
∂B1(0)

v(x+ ry) dy.

So
d

dr

(
1

4πr2

∫
∂Br(x)

v(y) dy

)
=

1

4π

∫
∂B1(0)

∇v(x+ ry) · y dy

=
1

4πr2

∫
∂Br(x)

∇v(y) · n dy

=
1

4πr2

∫
Br(x)

∆v(y) dy

≥ 0.

Moreover,

lim
r→0

1

4πr2

∫
∂Br(x)

v(y) dy = v(x).
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Therefore,

v(x) ≤ 1

4πr2

∫
∂Br(x)

v(y) dy.

So

4πr2v(x) ≤
∫
∂Br(x)

v(y) dy.

Integrating r, we have
4πr3

3
v(x) ≤

∫
Br(x)

v(y) dy,

giving that

v(x) ≤ 3

4πr3

∫
Br(x)

v(y) dy.

(b) Suppose that v attains its maximumM at x0. If x0 ∈ ∂U , the proof ends. If x0 ∈ U ,

we then show that v = M on U . Let

E = {x ∈ U | v(x) = M}.

ThenE is closed. Next we show thatE is open. Suppose that x ∈ E andBr(x) ⊂ U .

By (a),

M = v(x) ≤ 3

4πr3

∫
Br(x)

v(y) dy.

So v = M on Br(x) and Br(x) ⊂ E. Therefore E is open. Since U is connected

and E is nonempty, E = U . Hence v = M on U and max∂U v = M .

8. Consider v = ±u+ |x|2
6
λ where λ = maxU |f |. Then

∆v = ∓f + λ ≥ 0.

By 7,

max
U

v = max
∂U

v ≤ max
∂U

|g|+ C(U)λ.

So

±u ≤ max
U

v ≤ C(U)

(
max
∂U

|g|+max
U

|f |
)

on U , giving that

max
U

|u| ≤ C(U)

(
max
∂U

|g|+max
U

|f |
)
.

9. (a)

f̂ ′(n) =
1

2π

∫ π

−π

f ′(x)e−inx dx

=
1

2π

∫ π

−π

f(x) · ine−inx dx

= inf̂(n).
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f̂(0) =
1

2π

∫ π

−π

f(x) dx = 0.

By Parseval’s equality,
1

2π

∫ π

−π

|f(x)|2 dx =
∑
n̸=0

|f̂(n)|2

≤
∑
n ̸=0

|inf̂(n)|2

=
1

2π

∫ π

−π

|f ′(x)|2 dx.

(b) Consider the odd extension f̃ of f across 0. Then f̃ isC1 on [−π, π], f̃(−π) = f̃(π),

and
∫ π

−π
f̃(x) dx = 0. By (a),∫ π

−π

|f̃(x)|2 dx ≤
∫ π

−π

|f̃ ′(x)|2 dx,

giving that ∫ π

0

|f(x)|2 dx ≤
∫ π

0

|f ′(x)|2 dx.
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