MATH2050B Mathematical Analysis I 18/19

Assignment 5

Let (x_n) be a bounded sequence, $y_n := \sup\{x_n, x_{n+1}, ...\}$. $v \in \mathbb{R}$ is said to be an essential upper bound of (x_n) if $\exists N \in \mathbb{N}$ such that $x_m \leq v \ \forall n \geq N$. Let

 $V := \{ v \in \mathbb{R} : v \text{ is an essential upper bound of } (x_n) \}$

and

 $L := \{ l \in \mathbb{R} : \exists a \ subsequence \ of \ (x_n) \ convergent \ to \ l \} \}$

Show that

- 1. By what theorem (how it is stated), you can conclude that $y^* := \lim_n (y_n)$ does exist and $y^* = \inf\{y_n : n \in \mathbb{N}\}$?
- 2. Let $\alpha \in \mathbb{R}$. Then $y^* \leq \alpha \text{ iff } \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } x_n < \alpha + \epsilon \ \forall n \geq N$ and $\alpha < y^* \text{ iff } \forall \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N \text{ s.t. } \alpha - \epsilon < x_n$
- 3. Whate are y_n, y^*, V and L if $x_n = \frac{1}{n} \forall n$ (do the same for $x_n = 1 \frac{1}{n} \forall n$).
- 4. Show that any upper bound of (x_n) is an essential upper bound of (x_n) , and that any lower bound of (x_n) is a lower bound of V so inf V exists in \mathbb{R} .
- 5. inf $V = max L = y^*$ (denoted by $\lim_n \sup x_n$)