THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Extra Tutorial 4 (November 23)

Exercise 1. Let $\{a_n\}$ be defined by

 $a_1 = 1$ and $a_{n+1} = \frac{a_n + 2}{a_n + 1}$ for $n \ge 1$.

Determine if the sequence $\{a_n\}$ is convergent. If yes, find its limit.

Exercise 2. Let $\{r_j\}$ be the set of all rational numbers in \mathbb{R} . Define the function φ to be

$$\varphi(x) = \sum_{r_j < x} \frac{1}{2^j}, \quad x \in \mathbb{R}$$

Show that φ is an increasing function which is continuous at every irrational numbers, but discontinuous at every irrational numbers.

The following theorem was proved in Extra Tutorial 1.

Theorem (Heine-Borel Theorem). Every closed and bounded interval [a, b] is compact, *i.e.* any open interval covers C of [a, b] has a finite subcover.

Exercise 3. Use Heine-Borel Theorem to show that a function continuous on [a, b] is uniformly continuous on [a, b].