THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Extra Tutorial 3 (November 16)

Definition. Let $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$. For $\delta > 0$, define

$$\omega_f(\delta) = \sup\{|f(x) - f(y)| : x, y \in A, |x - y| < \delta\}.$$

The function so defined $\omega_f : (0, \infty) \to [0, \infty]$ is called the **modulus of continuity** of f over A.

Remark. 1. $\omega_f(\cdot)$ is increasing.

2. ω_f measures "how uniformly continuous" is the function $f: A \to \mathbb{R}$.

Exercise 1. Show that f is uniformly continuous on A if and only if $\lim_{\delta \to 0+} \omega_f(\delta) = 0$.

Exercise 2. Prove the following estimates on $\omega_f(\delta)$. Discuss the implication for uniform continuity.

(a) $f(x) = \sqrt{x}$ and $A = [0, \infty)$. Show that $\omega_f(\delta) \le \sqrt{\delta}$ for $\delta > 0$.

(b) $f(x) = x^2$ and $A = [0, \infty)$. Show that $\omega_f(\delta) = +\infty$ for $\delta > 0$.

Exercise 3. Show that the inequality in 2(a) is in fact an equality.

Exercise 4. Find the modulus of continuity of the function sin(1/x) on (0,1). Hence discuss the uniform continuity of the function.

Exercise 5 (Extra). Let $f(x) = x \sin(1/x)$ and $A = (0, \frac{1}{2\pi})$. Show that

$$\omega_f(\delta) \le C\delta^{1/2}, \qquad \forall \delta > 0,$$

for some constant C > 0 independent of δ .