THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Extra Tutorial 2 (November 9)

Question 1. Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous on $\mathbb{R} \setminus \mathbb{Q}$ but discontinuous on \mathbb{Q} ?

Answer: Yes. The Thomae's function.

Question 2. Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous on \mathbb{Q} but discontinuous on $\mathbb{R} \setminus \mathbb{Q}$?

Answer: No. Follow the exercises below to give a proof of this result.

Exercise 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function that is continuous on \mathbb{Q} . Write $\mathbb{Q} = \{r_n : n \in \mathbb{N}\}$.

- (a) Show that there is a sequence $\{I_n\}_{n\in\mathbb{N}}$ of closed bounded intervals such that for all $n\in\mathbb{N}$,
 - (i) $I_n \supseteq I_{n+1}$ (here [a, b] = (a, b));
 - (*ii*) $I_n \cap \{r_1, \ldots, r_n\} = \emptyset;$

(*iii*)
$$x, y \in I_n \implies |f(x) - f(y)| < \frac{1}{2^n}$$
.

- (b) Show that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ and f is continuous on $\bigcap_{n=1}^{\infty} I_n$.
- (c) Hence conclude f cannot be discontinuous on $\mathbb{R} \setminus \mathbb{Q}$.

The following could be useful in proving (a) above.

Exercise 2. Let $f : \mathbb{R} \to \mathbb{R}$ and let $a < x_0 < b$. Suppose f is continuous at x_0 . Show that, given any $\varepsilon > 0$, there exist $c, d \in \mathbb{R}$ such that $a < c < x_0 < d < b$ and

 $|f(x) - f(y)| < \varepsilon$ whenever $x, y \in [c, d]$.