THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Extra Tutorial 1 (November 2)

Definition (Open interval cover). Let B be a subset of R. A collection $C = \{U_{\alpha} : \alpha \in A\}$ of subsets of $\mathbb R$ is said to be an open interval cover of B if

(a) U_{α} is an open interval for all $\alpha \in \mathcal{A}$;

(b)
$$
B \subseteq \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}
$$
.

Definition (Compact set). A subset $B \subseteq \mathbb{R}$ is said to be **compact** if every open interval cover $\mathcal{C} = \{U_{\alpha} : \alpha \in \mathcal{A}\}\$ of B has a finite subcover, that is

 $B \subseteq U_{\alpha_1} \cup U_{\alpha_2} \cup \cdots \cup U_{\alpha_k}$ for some $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathcal{A}$.

Example. $\left\{ \left(0,1-\frac{1}{2}\right) \right\}$ n $\bigg): n \in \mathbb{N}$ is an open interval cover of (0, 1) with no finite subcover.

2. $C = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ n $, 1 +$ 1 n $\bigg): n \in \mathbb{N}$ is an open interval cover of [0, 1] with a finite subcover.

3. $C = \{(-n, n) : n \in \mathbb{N}\}\$ is an open interval cover of $\mathbb R$ with no finite subcover.

Theorem (Heine-Borel Theorem). Every closed and bounded interval [a, b] is compact.

Follow the exercises below to give two proofs of Heine-Borel Theorem.

Exercise 1. Assume $a < b$. Let C be an open interval cover of [a, b]. Define

 $S := \{x \in [a, b] : [a, x] \text{ is covered by a finite subcollection of } C\}.$

- (a) Show that S is non-empty and bounded.
- (b) Let $u = \sup S$. Show that $u \in S$.
- (c) Show that $u = b$.

Exercise 2. Without loss of generality, assume that $[a, b] = [0, 1] =: I$. Let C be an open interval cover of I . Suppose $\mathcal C$ has no finite subcover for I .

(a) Show that there is a sequence $\{I_n\}$ of closed bounded intervals such that

- (i) $I \supset I_1 \supset I_2 \supset \cdots$
- (ii) Each I_n is not covered by any finite subcollection of \mathcal{C} .
- (iii) If $x, y \in I_n$, then $|x y| \leq 2^{-n}$.

(b) Deduce a contradiction.