THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 9 (November 7)

The following were discussed in the tutorial this week:

- 1. Give an example for each of the following:
 - (a) $f : \mathbb{R} \to \mathbb{R}$ continuous only at one point,
 - (b) $f : \mathbb{R} \to \mathbb{R}$ discontinuous everywhere but |f| continuous everywhere,
 - (c) $f : \mathbb{R} \to \mathbb{R}$ continuous on $\mathbb{R} \setminus \mathbb{Q}$ but distontinuous on \mathbb{Q} ,
- 2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x \to -\infty} f = 0$ and $\lim_{x \to \infty} f = 0$. Prove that f is bounded on \mathbb{R} and attains either a maximum or minimum on \mathbb{R} . Give an example to show that both a maximum and a minimum need not be attained.
- 3. (Alternative proof of Location of Roots Theorem) Let I = [a, b], let $f : I \to \mathbb{R}$ be continuous on I, and assume that f(a) < 0, f(b) > 0. Let $W := \{x \in I : f(x) < 0\}$, and let $w := \sup W$. Prove that f(w) = 0.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that for any finite collection $\{x_1, x_2, \ldots, x_n\}$ of real numbers, there exists $x \in \mathbb{R}$ such that

$$f(x) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}.$$