THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 7 (October 24)

The following were discussed in the tutorial this week:

- 1. Use ε - δ definition to evaluate the $\lim_{x\to 2} \frac{x^3+1}{(x-1)(x-3)}$.
- 2. Recall the Sequential Criteria for limit and Divergence Criteria for limit.
- 3. Let $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$. Suppose c is a cluster point of A.
 - (a) Suppose $\lim_{x\to c} f(x)$ does not exist. Show that there exists $\varepsilon_0 > 0$ and two sequences (x_n) and (y_n) in $A \setminus \{c\}$, both converging to c, such that $|f(x_n) - f(y_n)| \ge \epsilon_0$ for all $n \in \mathbb{N}$.
 - (b) Prove the **Cauchy Criterion for limit**: $\lim_{x \to c} f(x) \text{ exists if and only if for all } \varepsilon > 0, \text{ there exists } \delta > 0 \text{ such that whenever}$ $x, y \in A \text{ with } 0 < |x - c|, |y - c| < \delta, \text{ we have } |f(x) - f(y)| < \varepsilon.$
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

- (a) Show that f has a limit at x = 0.
- (b) Show that if $c \neq 0$, then f does not have a limit at c.
- 5. Let $f, g : \mathbb{R} \to \mathbb{R}$ and $x_0, y_0, l \in \mathbb{R}$. Suppose
 - (i) $\lim_{x\to x_0} g(x) = y_0$ and $\lim_{y\to y_0} f(y) = \ell$;
 - (ii) there exists $\delta > 0$ such that $g(x) \neq y_0$ whenever $0 < |x x_0| < \delta$,
 - (a) Show that $\lim_{x \to x_0} f(g(x)) = \ell$.
 - (b) Can we drop condition (ii)?