THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 6 (October 19)

The following were discussed in the tutorial this week:

- 1. Let (a_n) be a bounded sequence of real numbers. Show that
 - (a) (i) $\overline{\lim_{n}} a_n \leq \alpha$ if and only if for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $a_n < \alpha + \varepsilon$ for all $n \geq N$.
 - (ii) $\overline{\lim_{n}} a_n \ge \alpha$ if and only if for any $\varepsilon > 0$, for all $n \in \mathbb{N}$, there is $k \ge n$ such that $a_k > \alpha \varepsilon$.
 - (b) (i) $\underline{\lim}_{n} a_n \ge \beta$ if and only if for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $a_n > \beta \varepsilon$ for all $n \ge N$.
 - (ii) $\underline{\lim_{n}} a_n \leq \beta$ if and only if for any $\varepsilon > 0$, for all $n \in \mathbb{N}$, there is $k \geq n$ such that $a_k < \beta + \varepsilon$.
- 2. (Stolz-Cesàro Theorem (∞/∞ case)) Let (a_n) and (b_n) be two sequences of real numbers such that (b_n) is strictly increasing and $\lim_n b_n = \infty$. Show that

$$\underline{\lim_{n} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}} \leq \underline{\lim_{n} \frac{a_n}{b_n}} \leq \overline{\lim_{n} \frac{a_n}{b_n}} \leq \overline{\lim_{n} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}}.$$

- 3. Use Stolz-Cesàro Theorem to evaluate the following limits. $\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}, \text{ where } p \in \mathbb{N}, p \neq 1$
- 4. Let (x_n) be a contractive sequence of rate $r \in (0, 1)$, that is

$$|x_{n+1} - x_n| \le r|x_n - x_{n-1}|$$
 for $n \ge 1$.

(a) Show that

$$|x_{n+k} - x_n| \le \frac{r^{n-1}}{1-r} |x_2 - x_1|$$
 for $n, k \ge 1$.

- (b) Hence, show that (x_n) is convergent.
- 5. Let (x_n) be defined by

$$\begin{cases} x_1 = 1, \quad x_2 = 2; \\ x_n = \frac{1}{3}(2x_{n-1} + x_{n-2}) & \text{for } n > 2. \end{cases}$$

Show that (x_n) converges and find its limit.

6. (Root Test for Series) Let (x_n) be a real sequence. Set

$$r := \overline{\lim_{n}} \, |x_n|^{1/n}.$$

- (a) If r < 1, then the series $\sum x_n$ is absolutely convergent.
- (b) If r > 1, then the series $\sum x_n$ is divergent.
- 7. Use the definition of limit to show that $\lim_{x \to -1} \frac{x^2 + 2x + 4}{x + 2} = 3.$