THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 5 (October 10)

The following were discussed in the tutorial this week:

(I am sorry that I made some mistakes in 2 and 3 in the tutorials. Please check the remarks below.)

1. Let (a_n) be a bounded sequence of real numbers. For each $n \in \mathbb{N}$, define

$$b_n = \sup_{k \ge n} a_k = \sup\{a_k : k \ge n\}, \qquad c_n = \inf_{k \ge n} a_k = \inf\{a_k : k \ge n\}.$$

(a) Show that (b_n) and (c_n) are monotone, and hence convergent. Moreover,

$$\lim_{n} b_n = \inf_{n} b_n, \quad \text{and} \quad \lim_{n} c_n = \sup_{n} c_n.$$

(b) The limits $\lim_{n} b_n$ and $\lim_{n} c_n$ are called the **limit superior** and **limit inferior** of (a_n) , respectively. That is,

$$\overline{\lim_{n} a_n} := \lim_{n} b_n = \inf_{n \ge 1} \left(\sup_{k \ge n} a_n \right), \qquad \underline{\lim_{n} a_n} := \lim_{n} c_n = \sup_{n \ge 1} \left(\inf_{k \ge n} a_n \right).$$

Show that $\underline{\lim}_{n} a_n \leq \overline{\lim}_{n} a_n$.

(c) Show that (a_n) converges to ℓ if and only if $\overline{\lim_n} a_n = \underline{\lim_n} a_n = \ell$.

Remark: If (a_n) is unbounded above (below), define $\overline{\lim_n} a_n = +\infty$ $(\underline{\lim_n} a_n = -\infty)$.

- 2. Let (a_n) be a bounded sequence of real numbers. Show that
 - (a) (i) if lim a_n < α, then there is N ∈ N such that a_n < α for all n ≥ N.
 (ii) if lim a_n > α, then for all n ∈ N, there is k ≥ n such that a_k > α.
 - (b) (i) if $\underline{\lim_{n}} a_n > \beta$, then there is $N \in \mathbb{N}$ such that $a_n > \beta$ for all $n \ge N$. (ii) if $\underline{\lim_{n}} a_n < \beta$, then for all $n \in \mathbb{N}$, there is $k \ge n$ such that $a_k < \beta$.

Remark: I am sorry that I made a mistake in tutorials claiming that the converse of the above statements were also true. This is not correct.

3. Let (a_n) be a bounded sequence of real numbers. Define

 $E := \{x \in \mathbb{R} : \text{there is a subsequence } (a_{n_k}) \text{ of } (a_n) \text{ such that } a_{n_k} \to x\}.$

Let $\alpha = \overline{\lim_{n}} a_n$. Show that $\alpha \in E$ and $\alpha = \sup E$. An analogous result holds for limit inferior.

Remark: I am sorry that I made a mistake in the proof of $\alpha \in E$ in the first tutorial. A correct proof is given below:

By 2(a)(ii), there is
$$n_1 \in \mathbb{N}$$
 such that $\alpha - \frac{1}{2^1} < a_{n_1}$.
By 2(a)(ii), there is $n_2 \ge n_1 + 1$ such that $\alpha - \frac{1}{2^2} < a_{n_2}$.
By 2(a)(ii), there is $n_3 \ge n_2 + 1$ such that $\alpha - \frac{1}{2^3} < a_{n_3}$.

Continue in this way, we find $n_1 < n_2 < n_3 < \cdots$ such that for all $k \in \mathbb{N}$,

$$\alpha - \frac{1}{2^k} < a_{n_k} \le b_{n_k} := \sup\{a_m : m \ge n_k\}.$$

Since $\lim_{k} \left(\alpha - \frac{1}{2^{k}} \right) = \lim_{k} b_{n_{k}} = \alpha$, it follows from the squeeze theorem that $\lim_{k} a_{n_{k}} = \alpha$. Since $(a_{n_{k}})$ is a subsequence of (a_{n}) , we have $\alpha \in E$ \Box .

4. Let (x_n) and (y_n) be bounded sequences of real numbers. Show that

(a)
$$\overline{\lim_{n}}(-x_{n}) = -\underline{\lim_{n}} x_{n};$$

(b) if $x_{n} \leq y_{n}$ for all n , then $\overline{\lim_{n}} x_{n} \leq \overline{\lim_{n}} y_{n}$ and $\underline{\lim_{n}} x_{n} \leq \underline{\lim_{n}} y_{n};$
(c) $\underline{\lim_{n}} x_{n} + \underline{\lim_{n}} y_{n} \leq \underline{\lim_{n}} (x_{n} + y_{n})$ and $\overline{\lim_{n}} (x_{n} + y_{n}) \leq \overline{\lim_{n}} x_{n} + \overline{\lim_{n}} y_{n}$

5. Let (x_n) be a sequence of positive real numbers. Show that

$$\underline{\lim_{n} \frac{x_{n+1}}{x_n}} \le \underline{\lim_{n} \sqrt[n]{x_n}} \le \overline{\lim_{n} \sqrt[n]{x_n}} \le \overline{\lim_{n} \frac{x_{n+1}}{x_n}}$$

6. Let (x_n) be a sequence of real numbers. Show that

$$\underline{\lim_{n} x_n} \le \underline{\lim_{n} \frac{x_1 + \dots + x_n}{n}} \le \overline{\lim_{n} \frac{x_1 + \dots + x_n}{n}} \le \overline{\lim_{n} x_n}.$$