THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 11 (November 21)

The following were discussed in the tutorial this week:

- 1. Let f and g be uniformly continuous on $A \subseteq \mathbb{R}$. If f, g are both bounded on A, show that fg is uniformly continuous on A. Can the boundedness condition be dropped?
- 2. Let f(x) := x and $g(x) = \sin x$. Show that both f and g are uniformly continuous on \mathbb{R} , but that their product fg is not uniformly continuous on \mathbb{R} .
- 3. Let $f: A \to \mathbb{R}$ be a function.
 - (a) If f is uniformly continuous, show that f maps any Cauchy sequence to a Cauchy sequence.
 - (b) Is the converse true?
 - (c) Prove the converse if we further assume that A is bounded.
- 4. Suppose $f: [0, \infty) \to \mathbb{R}$ is uniformly continuous on $[0, \infty)$ and $\lim_{n} f(n+h) = L$ for any $h \in [0, 1]$. Show that $\lim_{x \to \infty} f(x) = L$.
- 5. Let A be a nonempty subset of \mathbb{R} . For $x \in \mathbb{R}$, define

$$\rho(x) = \inf\{|x - y| : y \in A\}$$

- (a) Show that ρ_A is uniformly continuous on A.
- (b) Show that, for any $x \in \mathbb{R}$, there exists $z \in \mathbb{R}$ such that

$$\rho_A(x) = |x - z|.$$

Does z always belong to A?